Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 171(2): 287-304.e15, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985561

RESUMEN

The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP.


Asunto(s)
Evolución Biológica , Embryophyta/genética , Genoma de Planta , Marchantia/genética , Adaptación Biológica , Embryophyta/fisiología , Regulación de la Expresión Génica de las Plantas , Marchantia/fisiología , Anotación de Secuencia Molecular , Transducción de Señal , Transcripción Genética
2.
Nucleic Acids Res ; 52(D1): D67-D71, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37971299

RESUMEN

The Bioinformation and DNA Data Bank of Japan (DDBJ) Center (https://www.ddbj.nig.ac.jp) provides database archives that cover a wide range of fields in life sciences. As a founding member of the International Nucleotide Sequence Database Collaboration (INSDC), DDBJ accepts and distributes nucleotide sequence data as well as their study and sample information along with the National Center for Biotechnology Information in the United States and the European Bioinformatics Institute (EBI). Besides INSDC databases, the DDBJ Center provides databases for functional genomics (GEA: Genomic Expression Archive), metabolomics (MetaboBank) and human genetic and phenotypic data (JGA: Japanese Genotype-phenotype Archive). These database systems have been built on the National Institute of Genetics (NIG) supercomputer, which is also open for domestic life science researchers to analyze large-scale sequence data. This paper reports recent updates on the archival databases and the services of the DDBJ Center, highlighting the newly redesigned MetaboBank. MetaboBank uses BioProject and BioSample in its metadata description making it suitable for multi-omics large studies. Its collaboration with MetaboLights at EBI brings synergy in locating and reusing public data.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Metabolómica , Metadatos , Humanos , Biología Computacional , Genómica , Internet , Japón , Multiómica/métodos
3.
Brief Bioinform ; 24(6)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37798248

RESUMEN

Although current long-read sequencing technologies have a long-read length that facilitates assembly for genome reconstruction, they have high sequence errors. While various assemblers with different perspectives have been developed, no systematic evaluation of assemblers with long reads for diploid genomes with varying heterozygosity has been performed. Here, we evaluated a series of processes, including the estimation of genome characteristics such as genome size and heterozygosity, de novo assembly, polishing, and removal of allelic contigs, using six genomes with various heterozygosity levels. We evaluated five long-read-only assemblers (Canu, Flye, miniasm, NextDenovo and Redbean) and five hybrid assemblers that combine short and long reads (HASLR, MaSuRCA, Platanus-allee, SPAdes and WENGAN) and proposed a concrete guideline for the construction of haplotype representation according to the degree of heterozygosity, followed by polishing and purging haplotigs, using stable and high-performance assemblers: Redbean, Flye and MaSuRCA.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Haplotipos , Heterocigoto , Alelos
4.
Nucleic Acids Res ; 51(D1): D101-D105, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36420889

RESUMEN

The Bioinformation and DNA Data Bank of Japan (DDBJ) Center (https://www.ddbj.nig.ac.jp) maintains database archives that cover a wide range of fields in life sciences. As a founding member of the International Nucleotide Sequence Database Collaboration (INSDC), our primary mission is to collect and distribute nucleotide sequence data, as well as their study and sample information, in collaboration with the National Center for Biotechnology Information in the United States and the European Bioinformatics Institute. In addition to INSDC resources, the Center operates databases for functional genomics (GEA: Genomic Expression Archive), metabolomics (MetaboBank), and human genetic and phenotypic data (JGA: Japanese Genotype-Phenotype Archive). These databases are built on the supercomputer of the National Institute of Genetics, whose remaining computational capacity is actively utilized by domestic researchers for large-scale biological data analyses. Here, we report our recent updates and the activities of our services.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Genómica , Humanos , Estados Unidos , Biología Computacional , Computadores , Secuencia de Bases , Japón , Internet
5.
Proc Natl Acad Sci U S A ; 119(23): e2121469119, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35658077

RESUMEN

Recent studies have revealed a surprising diversity of sex chromosomes in vertebrates. However, the detailed mechanism of their turnover is still elusive. To understand this process, it is necessary to compare closely related species in terms of sex-determining genes and the chromosomes harboring them. Here, we explored the genus Takifugu, in which one strong candidate sex-determining gene, Amhr2, has been identified. To trace the processes involved in transitions in the sex-determination system in this genus, we studied 12 species and found that while the Amhr2 locus likely determines sex in the majority of Takifugu species, three species have acquired sex-determining loci at different chromosomal locations. Nevertheless, the generation of genome assemblies for the three species revealed that they share a portion of the male-specific supergene that contains a candidate sex-determining gene, GsdfY, along with genes that potentially play a role in male fitness. The shared supergene spans ∼100 kb and is flanked by two duplicated regions characterized by CACTA transposable elements. These results suggest that the shared supergene has taken over the role of sex-determining locus from Amhr2 in lineages leading to the three species, and repeated translocations of the supergene underlie the turnover of sex chromosomes in these lineages. These findings highlight the underestimated role of a mobile supergene in the turnover of sex chromosomes in vertebrates.


Asunto(s)
Procesos de Determinación del Sexo , Takifugu , Animales , Elementos Transponibles de ADN/genética , Evolución Molecular , Cromosomas Sexuales/genética , Procesos de Determinación del Sexo/genética , Takifugu/genética , Translocación Genética
6.
Plant J ; 115(1): 175-189, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36994645

RESUMEN

In plants, variations in seed size and number are outcomes of different reproductive strategies. Both traits are often environmentally influenced, suggesting that a mechanism exists to coordinate these phenotypes in response to available maternal resources. Yet, how maternal resources are sensed and influence seed size and number is largely unknown. Here, we report a mechanism that senses maternal resources and coordinates grain size and number in the wild rice Oryza rufipogon, a wild progenitor of Asian cultivated rice. We showed that FT-like 9 (FTL9) regulates both grain size and number and that maternal photosynthetic assimilates induce FTL9 expression in leaves to act as a long-range signal that increases grain number and reduces size. Our findings highlight a strategy that benefits wild plants to survive in a fluctuating environment. In this strategy, when maternal resources are sufficient, wild plants increase their offspring number while preventing an increase in offspring size by the action of FTL9, which helps expand their habitats. In addition, we found that a loss-of-function allele (ftl9) is prevalent among wild and cultivated populations, offering a new scenario in the history of rice domestication.


Asunto(s)
Grano Comestible , Oryza , Grano Comestible/genética , Grano Comestible/metabolismo , Semillas/genética , Fenotipo , Hojas de la Planta/genética , Domesticación , Oryza/genética , Oryza/metabolismo
7.
Plant Cell Physiol ; 64(2): 248-257, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36755428

RESUMEN

Nicotiana benthamiana is widely used as a model plant for dicotyledonous angiosperms. In fact, the strains used in research are highly susceptible to a wide range of viruses. Accordingly, these strains are subject to plant pathology and plant-microbe interactions. In terms of plant-plant interactions, N. benthamiana is one of the plants that exhibit grafting affinity with plants from different families. Thus, N. benthamiana is a good model for plant biology and has been the subject of genome sequencing analyses for many years. However, N. benthamiana has a complex allopolyploid genome, and its previous reference genome is fragmented into 141,000 scaffolds. As a result, molecular genetic analysis is difficult to perform. To improve this effort, de novo whole-genome assembly was performed in N. benthamiana with Hifi reads, and 1,668 contigs were generated with a total length of 3.1 Gb. The 21 longest scaffolds, regarded as pseudomolecules, contained a 2.8-Gb sequence, occupying 95.6% of the assembled genome. A total of 57,583 high-confidence gene sequences were predicted. Based on a comparison of the genome structures between N. benthamiana and N. tabacum, N. benthamiana was found to have more complex chromosomal rearrangements, reflecting the age of interspecific hybridization. To verify the accuracy of the annotations, the cell wall modification genes involved in grafting were analyzed, which revealed not only the previously indeterminate untranslated region, intron and open reading frame sequences but also the genomic locations of their family genes. Owing to improved genome assembly and annotation, N. benthamiana would increasingly be more widely accessible.


Asunto(s)
Genes de Plantas , Nicotiana , Nicotiana/genética , Genómica , Genoma de Planta
8.
BMC Plant Biol ; 23(1): 391, 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37568098

RESUMEN

BACKGROUND: Plant genome information is fundamental to plant research and development. Along with the increase in the number of published plant genomes, there is a need for an efficient system to retrieve various kinds of genome-related information from many plant species across plant kingdoms. Various plant databases have been developed, but no public database covers both genomic and genetic resources over a wide range of plant species. MAIN BODY: We have developed a plant genome portal site, Plant GARDEN (Genome And Resource Database Entry: https://plantgarden.jp/en/index ), to provide diverse information related to plant genomics and genetics in divergent plant species. Elasticsearch is used as a search engine, and cross-keyword search across species is available. Web-based user interfaces (WUI) for PCs and tablet computers were independently developed to make data searches more convenient. Several types of data are stored in Plant GARDEN: reference genomes, gene sequences, PCR-based DNA markers, trait-linked DNA markers identified in genetic studies, SNPs, and in/dels on publicly available sequence read archives (SRAs). The data registered in Plant GARDEN as of March 2023 included 304 assembled genome sequences, 11,331,614 gene sequences, 419,132 DNA markers, 8,225 QTLs, and 5,934 SNP lists (gvcf files). In addition, we have re-annotated all the genes registered in Plant GARDEN by using a functional annotation tool, Hayai-Annotation, to compare the orthologous relationships among genes. CONCLUSION: The aim of Plant GARDEN is to provide plant genome information for use in the fields of plant science as well as for plant-based industries, education, and other relevant areas. Therefore, we have designed a WUI that allows a diverse range of users to access such information in an easy-to-understand manner. Plant GARDEN will eventually include a wide range of plant species for which genome sequences are assembled, and thus the number of plant species in the database will continue to expand. We anticipate that Plant GARDEN will promote the understanding of genomes and gene diversity by facilitating comparisons of the registered sequences.


Asunto(s)
Bases de Datos Genéticas , Genómica , Marcadores Genéticos , Genoma de Planta/genética , Sitios de Carácter Cuantitativo
9.
Plant Cell Physiol ; 63(11): 1745-1755, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36083565

RESUMEN

The liverwort Marchantia polymorpha is equipped with a wide range of molecular and genetic tools and resources that have led to its wide use to explore the evo-devo aspects of land plants. Although its diverse transcriptome data are rapidly accumulating, there is no extensive yet user-friendly tool to exploit such a compilation of data and to summarize results with the latest annotations. Here, we have developed a web-based suite of tools, MarpolBase Expression (MBEX, https://marchantia.info/mbex/), where users can visualize gene expression profiles, identify differentially expressed genes, perform co-expression and functional enrichment analyses and summarize their comprehensive output in various portable formats. Using oil body biogenesis as an example, we demonstrated that the results generated by MBEX were consistent with the published experimental evidence and also revealed a novel transcriptional network in this process. MBEX should facilitate the exploration and discovery of the genetic and functional networks behind various biological processes in M. polymorpha and promote our understanding of the evolution of land plants.


Asunto(s)
Marchantia , Marchantia/genética , Marchantia/metabolismo , Transcriptoma/genética , Redes Reguladoras de Genes , Internet
10.
Genome Res ; 29(9): 1495-1505, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31439690

RESUMEN

How pathogens evolve their virulence to humans in nature is a scientific issue of great medical and biological importance. Shiga toxin (Stx)-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) are the major foodborne pathogens that can cause hemolytic uremic syndrome and infantile diarrhea, respectively. The locus of enterocyte effacement (LEE)-encoded type 3 secretion system (T3SS) is the major virulence determinant of EPEC and is also possessed by major STEC lineages. Cattle are thought to be the primary reservoir of STEC and EPEC. However, genome sequences of bovine commensal E. coli are limited, and the emerging process of STEC and EPEC is largely unknown. Here, we performed a large-scale genomic comparison of bovine commensal E. coli with human commensal and clinical strains, including EPEC and STEC, at a global level. The analyses identified two distinct lineages, in which bovine and human commensal strains are enriched, respectively, and revealed that STEC and EPEC strains have emerged in multiple sublineages of the bovine-associated lineage. In addition to the bovine-associated lineage-specific genes, including fimbriae, capsule, and nutrition utilization genes, specific virulence gene communities have been accumulated in stx- and LEE-positive strains, respectively, with notable overlaps of community members. Functional associations of these genes probably confer benefits to these E. coli strains in inhabiting and/or adapting to the bovine intestinal environment and drive their evolution to highly virulent human pathogens under the bovine-adapted genetic background. Our data highlight the importance of large-scale genome sequencing of animal strains in the studies of zoonotic pathogens.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Escherichia coli/clasificación , Factores de Virulencia/genética , Secuenciación Completa del Genoma/métodos , Animales , Bovinos , Escherichia coli Enteropatógena/clasificación , Escherichia coli Enteropatógena/genética , Escherichia coli/genética , Escherichia coli/patogenicidad , Proteínas de Escherichia coli/genética , Evolución Molecular , Redes Reguladoras de Genes , Genoma Bacteriano , Humanos , Filogenia , Escherichia coli Shiga-Toxigénica/clasificación , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/patogenicidad , Simbiosis
11.
Int J Syst Evol Microbiol ; 70(4): 2463-2466, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32068529

RESUMEN

Clostridium diolis shares high similarity based on 16S rRNA gene sequences and fatty acid composition with Clostridium beijerinckii. In this study, the taxonomic status of C. diolis was clarified using genomic and phenotypic approaches. High similarity was detected among C. diolis DSM 15410T, C. beijerinckii DSM 791T and NCTC 13035T, showing average nucleotide identity on blast and in silico DNA-DNA hybridization values over 97 and 85 %, respectively. Results of investigations for substrate utilization and enzyme activity displayed no striking differences between C. diolis DSM 15410T and C. beijerinckii JCM 1390T. Based on the results, we propose the reclassification of Clostridium diolis as a later heterotypic synonym of Clostridium beijerinckii. The type strain is ATCC 25752T (=CIP 104308T=DSM 791T=JCM 1390T=LMG 5716T=NCTC 13035T).


Asunto(s)
Clostridium beijerinckii/clasificación , Clostridium/clasificación , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
12.
Int J Syst Evol Microbiol ; 70(5): 3111-3116, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32250236

RESUMEN

Two Gram-stain-positive, rod-shaped, non-motile, non-spore-forming, catalase-negative bacteria, designated strains SG162T and NK01, were isolated from Japanese rice grain silage and total mixed ration silage, respectively. They were initially identified as Lactobacillus buchneri based on the 16S rRNA gene sequence similarities. However, the two strains were separated into a distinct clade from L. buchneri DSM 20057T (=JCM 1115T) through whole-genome sequence-based characterization, forming an infraspecific subgroup together with strains CD034 and S42, whose genomic sequences were available in the public sequence database. Strains within the subgroup shared 99.4-99.7 % average nucleotide identity (ANI) and 97.5-99.0 % digital DNA-DNA hybridization (dDDH) with each other, albeit 96.9-97.0 % ANI and 76.0-76.6 % dDDH against DSM 20057T. Strains SG162T and NK01 could utilize more substrates as sole carbon sources than DSM 20057T, potentially owing to the abundance of genes involved in carbon metabolism, especially the Entner-Doudoroff pathway. The inability of γ-aminobutyric acid (GABA) production was evidenced by the lack of glutamate decarboxylase and glutamate/GABA antiporter genes in the new subgroup strains. Strain SG162T grew at 10-45 °C (optimum, 30 °C), pH 3.5-8.0, and 0-8 % (w/v) NaCl. Its genomic DNA G+C content was 44.1 mol%. The predominant fatty acids were C16 : 0, C19 : 0 cyclo ω8c, and summed feature 8. On the basis of the polyphasic characterization findings, strains SG162T and NK01 represent a novel subspecies of L. buchneri, for which the name Lactobacillus buchneri subsp. silagei subsp. nov. is proposed. The type strain is SG162T (=JCM 32599T=DSM 107969T), and strains CD034 and S42 are also transferred to L. buchneri subsp. silagei.


Asunto(s)
Lactobacillus/clasificación , Oryza/microbiología , Filogenia , Ensilaje/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Grano Comestible/microbiología , Ácidos Grasos/química , Genes Bacterianos , Japón , Lactobacillus/aislamiento & purificación , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
13.
Nucleic Acids Res ; 46(D1): D30-D35, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29040613

RESUMEN

The DNA Data Bank of Japan (DDBJ) Center (http://www.ddbj.nig.ac.jp) has been providing public data services for 30 years since 1987. We are collecting nucleotide sequence data and associated biological information from researchers as a member of the International Nucleotide Sequence Database Collaboration (INSDC), in collaboration with the US National Center for Biotechnology Information and the European Bioinformatics Institute. The DDBJ Center also services the Japanese Genotype-phenotype Archive (JGA) with the National Bioscience Database Center to collect genotype and phenotype data of human individuals. Here, we outline our database activities for INSDC and JGA over the past year, and introduce submission, retrieval and analysis services running on our supercomputer system and their recent developments. Furthermore, we highlight our responses to the amended Japanese rules for the protection of personal information and the launch of the DDBJ Group Cloud service for sharing pre-publication data among research groups.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Academias e Institutos , Nube Computacional , Biología Computacional , Confidencialidad/legislación & jurisprudencia , Bases de Datos de Ácidos Nucleicos/historia , Bases de Datos de Ácidos Nucleicos/tendencias , Europa (Continente) , Estudios de Asociación Genética , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Almacenamiento y Recuperación de la Información , Cooperación Internacional , Japón , National Library of Medicine (U.S.) , Estados Unidos
15.
Bioinformatics ; 34(6): 1037-1039, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29106469

RESUMEN

Summary: We developed a prokaryotic genome annotation pipeline, DFAST, that also supports genome submission to public sequence databases. DFAST was originally started as an on-line annotation server, and to date, over 7000 jobs have been processed since its first launch in 2016. Here, we present a newly implemented background annotation engine for DFAST, which is also available as a standalone command-line program. The new engine can annotate a typical-sized bacterial genome within 10 min, with rich information such as pseudogenes, translation exceptions and orthologous gene assignment between given reference genomes. In addition, the modular framework of DFAST allows users to customize the annotation workflow easily and will also facilitate extensions for new functions and incorporation of new tools in the future. Availability and implementation: The software is implemented in Python 3 and runs in both Python 2.7 and 3.4-on Macintosh and Linux systems. It is freely available at https://github.com/nigyta/dfast_core/under the GPLv3 license with external binaries bundled in the software distribution. An on-line version is also available at https://dfast.nig.ac.jp/. Contact: yn@nig.ac.jp. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Genoma Bacteriano , Anotación de Secuencia Molecular/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Bacterias/genética , Genómica/métodos
16.
Int J Syst Evol Microbiol ; 69(2): 417-421, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30540240

RESUMEN

The taxonomic status of Paenibacillus thermophilus was analyzed using genomic and phenotypic approaches. The results of RNA polymerase beta subunit gene sequence comparisons indicated that two type strains of P. thermophilus (DSM 24746T and JCM 17693T) and Paenibacillus macerans ATCC 8244T shared 100 % sequence similarity. By whole-genome sequence comparison, their average nucleotide identity values were over 99.3 %. Investigation of substrate utilization, enzyme activities and cellular fatty acid patterns displayed no striking differences between P. thermophilus JCM 17693T and P. macerans JCM 2500T. On the basis of these results, we propose that the name Paenibacillus thermophilus is a later heterotypic synonym of Paenibacillus macerans.


Asunto(s)
Paenibacillus/clasificación , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
17.
Int J Syst Evol Microbiol ; 69(4): 964-969, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30628884

RESUMEN

A taxonomic study of a Gram-stain-positive, rod-shaped, non-motile, non-spore-forming, catalase-negative bacterium, strain YK43T, isolated from spent mushroom substrates stored in Nagano, Japan was performed. Growth was detected at 15-45 °C, pH 5.0-8.5, and 0-10 % (w/v) NaCl. The genomic DNA G+C content of strain YK43T was 43.6 mol%. The predominant fatty acids were C16 : 0, C18 : 1 ω9c and summed feature 8. Based on 16S rRNA gene sequence analysis, the type strains of Lactobacillus acidipiscis (sequence similarity, 97.6 %) and Lactobacillus pobuzihii (97.4 %) were most closely related to YK43T. The average nucleotide identities were 74.1 % between strain YK43T and L. acidipiscis DSM 15836T and 74.0 % between YK43T and L. pobuzihii E100301T. Based on a multilocus sequence analysis, comparative genomic analysis and a range of phenotypic and chemotaxonomic characteristics, strain YK43T represents a novel species of the genus Lactobacillus, for which the name Lactobacillussalitolerans sp. nov. is proposed. The type strain is YK43T (=JCM 31331T = DSM 103433T).


Asunto(s)
Agaricales , Lactobacillus/clasificación , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Japón , Lactobacillus/aislamiento & purificación , Tipificación de Secuencias Multilocus , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
18.
Nucleic Acids Res ; 45(D1): D25-D31, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27924010

RESUMEN

The DNA Data Bank of Japan (DDBJ) (http://www.ddbj.nig.ac.jp) has been providing public data services for thirty years (since 1987). We are collecting nucleotide sequence data from researchers as a member of the International Nucleotide Sequence Database Collaboration (INSDC, http://www.insdc.org), in collaboration with the US National Center for Biotechnology Information (NCBI) and European Bioinformatics Institute (EBI). The DDBJ Center also services Japanese Genotype-phenotype Archive (JGA), with the National Bioscience Database Center to collect human-subjected data from Japanese researchers. Here, we report our database activities for INSDC and JGA over the past year, and introduce retrieval and analytical services running on our supercomputer system and their recent modifications. Furthermore, with the Database Center for Life Science, the DDBJ Center improves semantic web technologies to integrate and to share biological data, for providing the RDF version of the sequence data.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Análisis de Secuencia de ADN , Animales , Genotipo , Humanos , Internet , Japón , Anotación de Secuencia Molecular , Fenotipo , Programas Informáticos
19.
Nucleic Acids Res ; 45(D1): D551-D554, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27899668

RESUMEN

The first ever cyanobacterial genome sequence was determined two decades ago and CyanoBase (http://genome.microbedb.jp/cyanobase), the first database for cyanobacteria was simultaneously developed to allow this genomic information to be used more efficiently. Since then, CyanoBase has constantly been extended and has received several updates. Here, we describe a new large-scale update of the database, which coincides with its 20th anniversary. We have expanded the number of cyanobacterial genomic sequences from 39 to 376 species, which consists of 86 complete and 290 draft genomes. We have also optimized the user interface for large genomic data to include the use of semantic web technologies and JBrowse and have extended community-based reannotation resources through the re-annotation of Synechocystis sp. PCC 6803 by the cyanobacterial research community. These updates have markedly improved CyanoBase, providing cyanobacterial genome annotations as references for cyanobacterial research.


Asunto(s)
Cianobacterias/genética , Bases de Datos Genéticas , Genoma Bacteriano , Genómica/métodos , Biología Computacional/métodos , Navegador Web
20.
Int J Syst Evol Microbiol ; 68(11): 3512-3517, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30226464

RESUMEN

Three strains, JCM 5343T, JCM 5344 and JCM 1130, currently identified as Lactobacillus gasseri, were investigated using a polyphasic taxonomic approach. Although these strains shared high 16S rRNA gene sequence similarities with L. gasseri ATCC 33323T (99.9 %), they formed a clade clearly distinct from ATCC 33323T based on whole-genome relatedness. The average nucleotide identity and in silico DNA-DNA hybridization values of these three strains compared to L. gasseri ATCC 33323T were 93.4-93.7 and 53.1-54.1 %, respectively, and both were less than the widely accepted threshold to distinguish two species (95 and 70 %, respectively). The three strains were Gram-stain positive, non-motile, non-spore-forming, catalase-negative and rod-shaped bacteria. They grew at 25-45 °C and in the presence of 2.0 % (w/v) NaCl. The major fatty acids of the three strains were C16 : 0 and C18 : 1 ω9c. Based on phylogenetic analyses of the phenylalanyl-tRNA synthase alpha subunit and RNA polymerase alpha subunit genes, and on phenotypic and chemotaxonomic characteristics, strains JCM 5343T, JCM 5344 and JCM 1130 represent a novel species distinct from L. gasseri, for which we propose the name Lactobacillusparagasseri sp. nov. In addition, a large portion of genomes currently labelled as L. gasseri in the public sequence database should be reclassified as L. paragasseri based on whole-genome relatedness.


Asunto(s)
Genoma Bacteriano , Lactobacillus/clasificación , Filogenia , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , ARN Polimerasas Dirigidas por ADN/genética , Ácidos Grasos/química , Lactobacillus/genética , Lactobacillus gasseri , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA