Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Luminescence ; 39(3): e4694, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38414310

RESUMEN

Two fluorescent chemosensors, denoted as chemosensor 1 and chemosensor 2, were synthesized and subjected to comprehensive characterization using various techniques. The characterization techniques employed were Fourier-transform infrared (FTIR), proton (1 H)- and carbon-13 (13 C)-nuclear magnetic resonance (NMR) spectroscopy, electrospray ionization (ESI) mass spectrometry, and single crystal X-ray diffraction analysis. Chemosensor 1 is composed of a 1H-imidazole core with specific substituents, including a 4-(2-(4,5-c-2-yl)naphthalene-3-yloxy)butoxy)naphthalene-1-yl moiety. However, chemosensor 2 features a 1H-imidazole core with distinct substituents, such as 4-methyl-2-(4,5-diphenyl-1H-imidazole-2-yl)phenoxy)butoxy)-5-methylphenyl. Chemosensor 1 crystallizes in the monoclinic space group C2/c. Both chemosensors 1 and 2 exhibit a discernible fluorescence quenching response selectively toward iron(III) ion (Fe3+ ) at 435 and 390 nm, respectively, in dimethylformamide (DMF) solutions, distinguishing them from other tested cations. This fluorescence quenching is attributed to the established mechanism of chelation quenched fluorescence (CHQF). The binding constants for the formation of the 1 + Fe3+ and 2 + Fe3+ complexes were determined using the modified Benesi-Hildebrand equation, yielding values of approximately 2.2 × 103 and 1.3 × 104 M-1 , respectively. The calculated average fluorescence lifetimes for 1 and 1 + Fe3+ were 2.51 and 1.17 ns, respectively, while for 2 and 2 + Fe3+ , the lifetimes were 1.13 and 0.63 ns, respectively. Additionally, the applicability of chemosensors 1 and 2 in detecting Fe3+ in live cells was demonstrated, with negligible observed cell toxicity.


Asunto(s)
Compuestos de Bifenilo , Colorantes Fluorescentes , Hierro , Hierro/análisis , Espectrometría de Fluorescencia/métodos , Colorantes Fluorescentes/química , Iones/química , Protones , Cationes , Naftalenos , Imidazoles/química
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 326: 125193, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39340942

RESUMEN

Dual sensing chemosensors for copper(II) and iron(III) ions are molecules or compounds designed to selectively detect and differentiate between these specific metal ions. Because metal ions like copper(II) and iron(III) are essential to so many industrial, biological, and environmental processes, their detection and measurement have become increasingly important. In this work, a novel dual-sensing chemosensor that combines high selectivity and sensitivity is presented. It is intended to detect copper(II) (Cu2+) and iron (III)(Fe3+) ions concurrently. The chemosensor combines two different recognition components into one platform and achieves dual-mode detection by combining optical and electrochemical sensing approaches. Using a dual sensing chemosensors for two cations can save money and time compared to preparing two separate chemosensors to sense each of those cations separately. We often use various techniques, including spectroscopy, fluorescence, and electrochemistry, to monitor and measure the changes induced by the interaction between the chemosensors and the metal ions. Discussions have been held on the excitation and emission wavelengths, media used in the spectroscopic measurements, binding constant with coordination binding mode, detection mechanism, and detection limit (LOD). This extensive review paper investigates colorimetric and fluorometric dual sensing analysis for Cu2+ and Fe3+ ions which includes more than sixty papers from the year of 2017 to 2023.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA