RESUMEN
Type I CRISPR-Cas systems utilize the RNA-guided Cascade complex to identify matching DNA targets and the nuclease-helicase Cas3 to degrade them. Among the seven subtypes, type I-C is compact in size and highly active in creating large-sized genome deletions in human cells. Here, we use four cryoelectron microscopy snapshots to define its RNA-guided DNA binding and cleavage mechanisms in high resolution. The non-target DNA strand (NTS) is accommodated by I-C Cascade in a continuous binding groove along the juxtaposed Cas11 subunits. Binding of Cas3 further traps a flexible bulge in NTS, enabling NTS nicking. We identified two anti-CRISPR proteins AcrIC8 and AcrIC9 that strongly inhibit Neisseria lactamica I-C function. Structural analysis showed that AcrIC8 inhibits PAM recognition through allosteric inhibition, whereas AcrIC9 achieves so through direct competition. Both Acrs potently inhibit I-C-mediated genome editing and transcriptional modulation in human cells, providing the first off-switches for type I CRISPR eukaryotic genome engineering.
Asunto(s)
Proteínas Asociadas a CRISPR , Edición Génica , Humanos , Sistemas CRISPR-Cas , Microscopía por Crioelectrón , Proteínas Asociadas a CRISPR/metabolismo , ADN/metabolismo , ARNRESUMEN
Type I CRISPR-Cas systems typically rely on a two-step process to degrade DNA. First, an RNA-guided complex named Cascade identifies the complementary DNA target. The helicase-nuclease fusion enzyme Cas3 is then recruited in trans for processive DNA degradation. Contrary to this model, here, we show that type I-A Cascade and Cas3 function as an integral effector complex. We provide four cryoelectron microscopy (cryo-EM) snapshots of the Pyrococcus furiosus (Pfu) type I-A effector complex in different stages of DNA recognition and degradation. The HD nuclease of Cas3 is autoinhibited inside the effector complex. It is only allosterically activated upon full R-loop formation, when the entire targeted region has been validated by the RNA guide. The mechanistic insights inspired us to convert Pfu Cascade-Cas3 into a high-sensitivity, low-background, and temperature-activated nucleic acid detection tool. Moreover, Pfu CRISPR-Cas3 shows robust bi-directional deletion-editing activity in human cells, which could find usage in allele-specific inactivation of disease-causing mutations.
Asunto(s)
Proteínas Asociadas a CRISPR , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Microscopía por Crioelectrón , ADN/genética , ADN/metabolismo , Endonucleasas/genética , Edición Génica , Humanos , ARNRESUMEN
Prokaryotes adapt to challenges from mobile genetic elements by integrating spacers derived from foreign DNA in the CRISPR array1. Spacer insertion is carried out by the Cas1-Cas2 integrase complex2-4. A substantial fraction of CRISPR-Cas systems use a Fe-S cluster containing Cas4 nuclease to ensure that spacers are acquired from DNA flanked by a protospacer adjacent motif (PAM)5,6 and inserted into the CRISPR array unidirectionally, so that the transcribed CRISPR RNA can guide target searching in a PAM-dependent manner. Here we provide a high-resolution mechanistic explanation for the Cas4-assisted PAM selection, spacer biogenesis and directional integration by type I-G CRISPR in Geobacter sulfurreducens, in which Cas4 is naturally fused with Cas1, forming Cas4/Cas1. During biogenesis, only DNA duplexes possessing a PAM-embedded 3'-overhang trigger Cas4/Cas1-Cas2 assembly. During this process, the PAM overhang is specifically recognized and sequestered, but is not cleaved by Cas4. This 'molecular constipation' prevents the PAM-side prespacer from participating in integration. Lacking such sequestration, the non-PAM overhang is trimmed by host nucleases and integrated to the leader-side CRISPR repeat. Half-integration subsequently triggers PAM cleavage and Cas4 dissociation, allowing spacer-side integration. Overall, the intricate molecular interaction between Cas4 and Cas1-Cas2 selects PAM-containing prespacers for integration and couples the timing of PAM processing with the stepwise integration to establish directionality.
Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endonucleasas/metabolismo , Geobacter/enzimología , Bases de Datos Genéticas , Modelos Moleculares , Conformación Molecular , Motivos de NucleótidosRESUMEN
Butanol dehydrogenase (BDH) plays a crucial role in butanol biosynthesis by catalyzing the conversion of butanal to butanol using the coenzyme NAD(P)H. In this study, we observed that BDH from Thermotoga maritima (TmBDH) exhibits dual coenzyme specificity and catalytic activity with NADPH as the coenzyme under highly alkaline conditions. Additionally, a thermal stability analysis on TmBDH demonstrated its excellent activity retention even at elevated temperatures of 80°C. These findings demonstrate the superior thermal stability of TmBDH and suggest that it is a promising candidate for large-scale industrial butanol production. Furthermore, we discovered that TmBDH effectively catalyzes the conversion of aldehydes to alcohols and exhibits a wide range of substrate specificities toward aldehydes, while excluding alcohols. The dimeric state of TmBDH was observed using rapid online buffer exchange native mass spectrometry. Additionally, we analyzed the coenzyme-binding sites and inferred the possible locations of the substrate-binding sites. These results provide insights that improve our understanding of BDHs.
RESUMEN
ß-glucosidases (Bgls) are glycosyl hydrolases that catalyze the conversion of cellobiose or glucosyl-polysaccharide into glucose. Bgls are widely used in industry to produce bioethanol, wine and juice, and feed. Tris (tris(hydroxymethyl)aminomethane) is an organic compound that can inhibit the hydrolase activity of some Bgls, but the inhibition state and selectivity have not been fully elucidated. Here, three crystal structures of Thermoanaerobacterium saccharolyticum Bgl complexed with the Tris molecule were determined at 1.55-1.95 Å. The configuration of Tris binding to TsaBgl remained consistent across three crystal structures, and the amino acids interacting with the Tris molecule were conserved across Bgl enzymes. The positions O1 and O3 atoms of Tris exhibit the same binding moiety as the hydroxyl group of the glucose molecule. Tris molecules are stably positioned at the glycone site and coordinate with surrounding water molecules. The Tris-binding configuration of TsaBgl is similar to that of HjeBgl, HgaBgl, ManBgl, and KflBgl, but the arrangement of the water molecule coordinating Tris at the aglycone site differs. Meanwhile, both the arrangement of Tris and the water molecules in ubBgl, NkoBgl, and SfrBgl differ from those in TsaBgl. The binding configuration and affinity of the Tris molecule for Bgl may be affected by the residues on the aglycone and gatekeeper regions. This result will extend our knowledge of the inhibitory effect of Tris molecules on TsaBgl.
Asunto(s)
Celobiosa , beta-Glucosidasa , beta-Glucosidasa/metabolismo , Celobiosa/metabolismo , Glucosa/metabolismo , Catálisis , AguaRESUMEN
The Keima family comprises large Stokes shift fluorescent proteins that are useful for dual-color fluorescence cross-correlation spectroscopy and multicolor imaging. The tKeima is a tetrameric large Stokes shift fluorescent protein and serves as the ancestor fluorescent protein for both dKeima and mKeima. The spectroscopic properties of tKeima have been previously reported; however, its structural basis and molecular properties have not yet been elucidated. In this study, we present the crystallographic results of the large Stokes shift fluorescent protein tKeima. The purified tKeima protein spontaneously crystallized after purification without further crystallization. The crystal structure of tKeima was determined at 3.0 Å resolution, revealing a ß-barrel fold containing the Gln-Tyr-Gly chromophores mainly with cis-conformation. The tetrameric interfaces of tKeima were stabilized by numerous hydrogen bonds and salt-bridge interactions. These key residues distinguish the substituted residues in dKeima and mKeima. The key structure-based residues involved in the tetramer formation of tKeima provide insights into the generation of a new type of monomeric mKeima. This structural analysis expands our knowledge of the Keima family and provides insights into its protein engineering.
Asunto(s)
Proteínas Luminiscentes , Modelos Moleculares , Proteína Fluorescente Roja , Proteínas Luminiscentes/química , Cristalografía por Rayos X , Conformación Proteica , Secuencia de Aminoácidos , Enlace de Hidrógeno , Espectrometría de Fluorescencia , Multimerización de ProteínaRESUMEN
Glucose isomerase (GI) is extensively used in the food industry for production of high-fructose corn syrup and for the production of biofuels and other renewable chemicals. Structure-based studies on GI inhibitors are important for improving its efficiency in industrial applications. Here, we report the subatomic crystal structure of Streptomyces rubiginosus GI (SruGI) complexed with its inhibitor, xylitol, at 0.99 Å resolution. Electron density map and temperature factor analysis showed partial binding of xylitol to the M1 metal binding site of SruGI, providing two different conformations of the metal binding site and the substrate binding channel. The xylitol molecule induced a conformational change in the M2 metal ion-interacting Asp255 residue, which subsequently led to a conformational change in the side chain of Asp181 residue. This led to the positional shift of Pro25 by 1.71 Å and side chain rotation of Phe26 by 21°, where located on the neighboring protomer in tetrameric SruGI. The conformation change of these two residues affect the size of the substrate-binding channel of GI. Therefore, xylitol binding to M1 site of SruGI induces not only a conformational changes of the metal-binding site, but also conformational change of substrate-binding channel of the tetrameric SruGI. These results expand our knowledge about the mechanism underlying the inhibitory effect of xylitol on GI.
Asunto(s)
Isomerasas Aldosa-Cetosa , Xilitol , Xilitol/química , Xilitol/farmacología , Sitios de Unión , Conformación Proteica , Metales/metabolismo , Isomerasas Aldosa-Cetosa/química , Glucosa/metabolismoRESUMEN
CRISPR (clustered regularly interspaced short palindromic repeats) and the nearby Cas (CRISPR-associated) operon establish an RNA-based adaptive immunity system in prokaryotes. Molecular memory is created when a short foreign DNA-derived prespacer is integrated into the CRISPR array as a new spacer. Whereas the RNA-guided CRISPR interference mechanism varies widely among CRISPR-Cas systems, the spacer integration mechanism is essentially identical. The conserved Cas1 and Cas2 proteins form an integrase complex consisting of two distal Cas1 dimers bridged by a Cas2 dimer. The prespacer is bound by Cas1-Cas2 as a dual-forked DNA, and the terminal 3'-OH of each 3' overhang serves as an attacking nucleophile during integration. The prespacer is preferentially integrated into the leader-proximal region of the CRISPR array, guided by the leader sequence and a pair of inverted repeats inside the CRISPR repeat. Spacer integration in the well-studied Escherichia coli type I-E CRISPR system also relies on the bacterial integration host factor. In type II-A CRISPR, however, Cas1-Cas2 alone integrates spacers efficiently in vitro; other Cas proteins (such as Cas9 and Csn2) have accessory roles in the biogenesis phase of prespacers. Here we present four structural snapshots from the type II-A system of Enterococcus faecalis Cas1 and Cas2 during spacer integration. Enterococcus faecalis Cas1-Cas2 selectively binds to a splayed 30-base-pair prespacer bearing 4-nucleotide 3' overhangs. Three molecular events take place upon encountering a target: first, the Cas1-Cas2-prespacer complex searches for half-sites stochastically, then it preferentially interacts with the leader-side CRISPR repeat, and finally, it catalyses a nucleophilic attack that connects one strand of the leader-proximal repeat to the prespacer 3' overhang. Recognition of the spacer half-site requires DNA bending and leads to full integration. We derive a mechanistic framework to explain the stepwise spacer integration process and the leader-proximal preference.
Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Enterococcus faecalis , Proteínas Asociadas a CRISPR/química , ADN/química , ADN/metabolismo , Enterococcus faecalis/genética , Enterococcus faecalis/inmunología , Escherichia coli/genética , Integrasas/química , Integrasas/metabolismo , Modelos MolecularesRESUMEN
Marine algae produce complex polysaccharides, which can be degraded by marine heterotrophic bacteria utilizing carbohydrate-active enzymes. The red algal polysaccharide porphyran contains the methoxy sugar 6-O-methyl-D-galactose (G6Me). In the degradation of porphyran, oxidative demethylation of this monosaccharide towards D-galactose and formaldehyde occurs, which is catalyzed by a cytochrome P450 monooxygenase and its redox partners. In direct proximity to the genes encoding for the key enzymes of this oxidative demethylation, genes encoding for zinc-dependent alcohol dehydrogenases (ADHs) were identified, which seem to be conserved in porphyran utilizing marine Flavobacteriia. Considering the fact that dehydrogenases could play an auxiliary role in carbohydrate degradation, we aimed to elucidate the physiological role of these marine ADHs. Although our results reveal that the ADHs are not involved in formaldehyde detoxification, a knockout of the ADH gene causes a dramatic growth defect of Zobellia galactanivorans with G6Me as a substrate. This indicates that the ADH is required for G6Me utilization. Complete biochemical characterizations of the ADHs from Formosa agariphila KMM 3901T (FoADH) and Z. galactanivorans DsijT (ZoADH) were performed, and the substrate screening revealed that these enzymes preferentially convert aromatic aldehydes. Additionally, we elucidated the crystal structures of FoADH and ZoADH in complex with NAD+ and showed that the strict substrate specificity of these new auxiliary enzymes is based on a narrow active site. KEY POINTS: ⢠Knockout of the ADH-encoding gene revealed its role in 6-O-methyl-D-galactose utilization, suggesting a new auxiliary activity in marine carbohydrate degradation. ⢠Complete enzyme characterization indicated no function in a subsequent reaction of the oxidative demethylation, such as formaldehyde detoxification. ⢠These marine ADHs preferentially convert aromatic compounds, and their strict substrate specificity is based on a narrow active site.
Asunto(s)
Galactosa , Rhodophyta , Polisacáridos/metabolismo , Carbohidratos , Rhodophyta/metabolismo , OxidorreductasasRESUMEN
Fusobacterium nucleatum is a lesion-associated obligate anaerobic pathogen of destructive periodontal disease; it is also implicated in the progression and severity of colorectal cancer. Four genes (FN0625, FN1055, FN1220, and FN1419) of F. nucleatum are involved in producing hydrogen sulfide (H2S), which plays an essential role against oxidative stress. The molecular functions of Fn1419 are known, but their mechanisms remain unclear. We determined the crystal structure of Fn1419 at 2.5 Å, showing the unique conformation of the PLP-binding site when compared with L-methionine γ-lyase (MGL) proteins. Inhibitor screening for Fn1419 with L-cysteine showed that two natural compounds, gallic acid and dihydromyricetin, selectively inhibit the H2S production of Fn1419. The chemicals of gallic acid, dihydromyricetin, and its analogs containing trihydroxybenzene, were potentially responsible for the enzyme-inhibiting activity on Fn1419. Molecular docking and mutational analyses suggested that Gly112, Pro159, Val337, and Arg373 are involved in gallic acid binding and positioned close to the substrate and pyridoxal-5'-phosphate-binding site. Gallic acid has little effect on the other H2S-producing enzymes (Fn1220 and Fn1055). Overall, we proposed a molecular mechanism underlying the action of Fn1419 from F. nucleatum and found a new lead compound for inhibitor development.
Asunto(s)
Fusobacterium nucleatum , Sulfuro de Hidrógeno , Fusobacterium nucleatum/metabolismo , Simulación del Acoplamiento Molecular , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismoRESUMEN
Butanol dehydrogenase (BDH) plays a significant role in the biosynthesis of butanol in bacteria by catalyzing butanal conversion to butanol at the expense of the NAD(P)H cofactor. BDH is an attractive enzyme for industrial application in butanol production; however, its molecular function remains largely uncharacterized. In this study, we found that Fusobacterium nucleatum YqdH (FnYqdH) converts aldehyde into alcohol by utilizing NAD(P)H, with broad substrate specificity toward aldehydes but not alcohols. An in vitro metal ion substitution experiment showed that FnYqdH has higher enzyme activity in the presence of Co2+. Crystal structures of FnYqdH, in its apo and complexed forms (with NAD and Co2+), were determined at 1.98 and 2.72 Å resolution, respectively. The crystal structure of apo- and cofactor-binding states of FnYqdH showed an open conformation between the nucleotide binding and catalytic domain. Key residues involved in the catalytic and cofactor-binding sites of FnYqdH were identified by mutagenesis and microscale thermophoresis assays. The structural conformation and preferred optimal metal ion of FnYqdH differed from that of TmBDH (homolog protein of FnYqdH). Overall, we proposed an alternative model for putative proton relay in FnYqdH, thereby providing better insight into the molecular function of BDH.
Asunto(s)
Fusobacterium nucleatum , NAD , Fusobacterium nucleatum/metabolismo , NAD/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Alcoholes , Butanoles , 1-Butanol , Especificidad por Sustrato , Cristalografía por Rayos X , Alcohol Deshidrogenasa/metabolismoRESUMEN
ß-glucosidase (Bgl) hydrolyzes cellobiose to glucose, thereby releasing non-reducing terminal glucosyl residues. Bgl is an essential enzyme belonging to the biomass-degrading enzyme family, which plays a vital role in enzymatic saccharification during biofuel production. The four loops above the Bgl substrate-binding pocket undergo a conformational change upon substrate recognition. However, the structural dynamism of this loop and how it is conserved among Bgl family members remain unknown. Herein, to better understand the four loops above the substrate-binding pocket of Bgl, four Bgl crystal structures in Thermoanaerobacterium saccharolyticum (TsaBgl) were determined at 1.5-2.1 Å. The L1, L2, and L4 loops of TsaBgl showed a rigid conformation stabilized by their neighboring residues via hydrogen bonds and hydrophobic interactions. The TsaBgl L3 loop showed relatively high flexibility and two different N-terminal region conformations. The conformational change in the TsaBgl L3 loop induced a change in charge and shaped at the substrate-binding pocket entrance. The amino acid sequences and structures of the TsaBgl L1-4 loops were compared with other 45 Bgl proteins, and a diversity of the L2 and L3 loops was observed. Differences in amino acids and lengths of Bgls L2-L3 loop induced differences in the conformation and structure of the Bgls substrate-binding pocket entrance. These findings expand our knowledge on the molecular function of the loops in the Bgl enzyme family.
Asunto(s)
Celobiosa , beta-Glucosidasa , beta-Glucosidasa/metabolismo , Secuencia de AminoácidosRESUMEN
All natural molecules have their own physical, chemical, or biological properties and functions [...].
Asunto(s)
Simulación de Dinámica Molecular , Sustancias MacromolecularesRESUMEN
Sensitive and accurate detection of specific metal ions is important for sensor development and can advance analytical science and support environmental and human medical examinations. Fluorescent proteins (FPs) can be quenched by specific metal ions and spectroscopically show a unique fluorescence-quenching sensitivity, suggesting their potential application as FP-based metal biosensors. Since the characteristics of the fluorescence quenching are difficult to predict, spectroscopic analysis of new FPs is important for the development of FP-based biosensors. Here we reported the spectroscopic and structural analysis of metal-induced fluorescence quenching of the photoconvertible fluorescent protein DendFP. The spectroscopic analysis showed that Fe2+, Fe3+, and Cu2+ significantly reduced the fluorescence emission of DendFP. The metal titration experiments showed that the dissociation constants (Kd) of Fe2+, Fe3+, and Cu2+ for DendFP were 24.59, 41.66, and 137.18 µM, respectively. The tetrameric interface of DendFP, which the metal ions cannot bind to, was analyzed. Structural comparison of the metal-binding sites of DendFP with those of iq-mEmerald and Dronpa suggested that quenchable DendFP has a unique metal-binding site on the ß-barrel that does not utilize the histidine pair for metal binding.
Asunto(s)
Técnicas Biosensibles , Metales , Fluorescencia , Colorantes Fluorescentes/química , Histidina , Humanos , Iones/química , Proteínas Luminiscentes/química , Metales/químicaRESUMEN
ß-Glucosidases (Bgls) convert cellobiose and other soluble cello-oligomers into glucose and play important roles in fundamental biological processes, providing energy sources in living organisms. Bgls are essential terminal enzymes of cellulose degradation systems and attractive targets for lignocellulose-based biotechnological applications. Characterization of novel Bgls is important for broadening our knowledge of this enzyme class and can provide insights into its further applications. In this study, we report the biochemical and structural analysis of a Bgl from the hemicellulose-degrading thermophilic anaerobe Thermoanaerobacterium saccharolyticum (TsaBgl). TsaBgl exhibited its maximum hydrolase activity on p-nitrophenyl-ß-d-glucopyranoside at pH 6.0 and 55 °C. The crystal structure of TsaBgl showed a single (ß/α)8 TIM-barrel fold, and a ß8-α14 loop, which is located around the substrate-binding pocket entrance, showing a unique conformation compared with other structurally known Bgls. A Tris molecule inhibited enzyme activity and was bound to the active site of TsaBgl coordinated by the catalytic residues Glu163 (proton donor) and Glu351 (nucleophile). Titration experiments showed that TsaBgl belongs to the glucose-tolerant Bgl family. The gatekeeper site of TsaBgl is similar to those of other glucose-tolerant Bgls, whereas Trp323 and Leu170, which are involved in glucose tolerance, show a unique configuration. Our results therefore improve our knowledge about the Tris-mediated inhibition and glucose tolerance of Bgl family members, which is essential for their industrial application.
Asunto(s)
Thermoanaerobacterium/enzimología , beta-Glucosidasa/química , Secuencia de Aminoácidos , Biodegradación Ambiental , Fenómenos Químicos , Glucosa/metabolismo , Modelos Moleculares , Estructura Molecular , Polisacáridos/química , Polisacáridos/metabolismo , Conformación Proteica , Relación Estructura-Actividad , Thermoanaerobacterium/metabolismo , beta-Glucosidasa/metabolismoRESUMEN
Pyridoxal 5'-phosphate (PLP) is the active form of vitamin B6, but it is highly reactive and poisonous in its free form. YggS is a PLP-binding protein found in bacteria and humans that mediates PLP homeostasis by delivering PLP to target enzymes or by performing a protective function. Several biochemical and structural studies of YggS have been reported, but the mechanism by which YggS recognizes PLP has not been fully elucidated. Here, we report a functional and structural analysis of YggS from Fusobacterium nucleatum (FnYggS). The PLP molecule could bind to native FnYggS, but no PLP binding was observed for selenomethionine (SeMet)-derivatized FnYggS. The crystal structure of FnYggS showed a type III TIM barrel fold, exhibiting structural homology with several other PLP-dependent enzymes. Although FnYggS exhibited low (<35%) amino acid sequence similarity with previously studied YggS proteins, its overall structure and PLP-binding site were highly conserved. In the PLP-binding site of FnYggS, the sulfate ion was coordinated by the conserved residues Ser201, Gly218, and Thr219, which were positioned to provide the binding moiety for the phosphate group of PLP. The mutagenesis study showed that the conserved Ser201 residue in FnYggS was the key residue for PLP binding. These results will expand the knowledge of the molecular properties and function of the YggS family.
Asunto(s)
Proteínas Bacterianas/metabolismo , Fusobacterium nucleatum , Fosfato de Piridoxal , Proteínas Bacterianas/química , Sitios de Unión , Homeostasis , Humanos , Fosfatos/metabolismo , Proteínas , Piridoxal , Fosfato de Piridoxal/metabolismoRESUMEN
Glucose/xylose isomerase catalyzes the reversible isomerization of d-glucose and d-xylose to d-fructose and d-xylulose, respectively. This enzyme is not only involved in sugar metabolism but also has industrial applications, such as in the production of high fructose corn syrup and bioethanol. Various crystal structures of glucose isomerase have shown the binding configuration of the substrate and its molecular mechanism; however, the metal binding mechanism required for the isomerization reaction has not been fully elucidated. To better understand the functional metal binding, the crystal structures of the metal-bound and metal-free states of Streptomyces rubiginosus glucose isomerase (SruGI) were determined at 1.4 Å and 1.5 Å resolution, respectively. In the meal-bound state of SruGI, Mg2+ is bound at the M1 and M2 sites, while in the metal-free state, these sites are occupied by water molecules. Structural comparison between the metal binding sites of the metal-bound and metal-free states of SruGI revealed that residues Glu217 and Asp257 exhibit a rigid configuration at the bottom of the metal binding site, suggesting that they serve as a metal-binding platform that defined the location of the metal. In contrast, the side chains of Glu218, His220, Asp255, Asp257, and Asp287 showed configuration changes such as shifts and rotations. Notably, in the metal-free state, the side chains of these amino acids are shifted away from the metal binding site, indicating that the metal-binding residues exhibit a minimal open configuration, which allows metal binding without large conformational changes.
Asunto(s)
Isomerasas Aldosa-Cetosa/química , Isomerasas Aldosa-Cetosa/metabolismo , Metales/química , Metales/metabolismo , Streptomyces/enzimología , Sitios de Unión , Cobalto/química , Cobalto/metabolismo , Cristalografía por Rayos X , Magnesio/química , Magnesio/metabolismo , Manganeso/química , Manganeso/metabolismo , Modelos Moleculares , Relación Estructura-ActividadRESUMEN
The fluorescence of fluorescent proteins (FPs) is quenched when they are exposed to certain transition metals, which makes them promising receptor materials for metal biosensors. In this study, we report the spectroscopic analysis of metal-induced fluorescence quenching of the fluorescent protein ZsGreen from Zoanthus sp. The fluorescence of ZsGreen was reduced to 2%, 1%, and 20% of its original intensity by Fe2+, Fe3+, and Cu2+, respectively. Metal titration experiments indicated that the dissociation constants of Fe2+, Fe3+, and Cu2+ for ZsGreen were 11.5, 16.3, and 68.2 µM, respectively. The maximum binding capacities of ZsGreen for Fe2+, Fe3+, and Cu2+ were 103.3, 102.2, and 82.9, respectively. Reversibility experiments indicated that the fluorescence of ZsGreen, quenched by Fe2+ and Fe3+, could be recovered, but only to about 15% of its original intensity, even at a 50-fold molar excess of EDTA. In contrast, the fluorescence quenched by Cu2+ could be recovered up to 89.47% of its original intensity at a Cu2+: EDTA ratio of 1:5. The homology model of ZsGreen revealed that the protein does not share any metal-binding sites with previously reported FPs, suggesting that ZsGreen contains unprecedented binding sites for fluorescence quenching metal ions.
Asunto(s)
Antozoos/química , Colorantes Fluorescentes/química , Proteínas Fluorescentes Verdes/análisis , Compuestos de Hierro/química , Animales , Cobre/química , Iones/química , Espectrometría de FluorescenciaRESUMEN
Glucose isomerase (GI) is an important enzyme that is widely used in industrial applications, such as in the production of high-fructose corn syrup or bioethanol. Studying inhibitor effects on GI is important to deciphering GI-specific molecular functions, as well as potential industrial applications. Analysis of the existing xylitol-bound GI structure revealed low metal occupancy at the M2 site; however, it remains unknown why this phenomenon occurs. This study reports the room-temperature structures of native and xylitol-bound GI from Streptomyces rubiginosus (SruGI) determined by serial millisecond crystallography. The M1 site of native SruGI exhibits distorted octahedral coordination; however, xylitol binding results in the M1 site exhibit geometrically stable octahedral coordination. This change results in the rearrangement of metal-binding residues for the M1 and M2 sites, the latter of which previously displayed distorted metal coordination, resulting in unstable coordination of Mg2+ at the M2 site and possibly explaining the inducement of low metal-binding affinity. These results enhance the understanding of the configuration of the xylitol-bound state of SruGI and provide insights into its future industrial application.
Asunto(s)
Isomerasas Aldosa-Cetosa/química , Modelos Moleculares , Conformación Proteica , Xilitol/química , Sitios de Unión , Cristalografía por Rayos X , Metales/química , Unión Proteica , Relación Estructura-Actividad , TemperaturaRESUMEN
All molecular systems, from small molecules to macromolecules, exhibit specific characteristics for a specific environment and time. In order to gain an accurate understanding of the functions of all types of molecules, studies of their structure and dynamics are essential. Through dynamic studies, using techniques such as spectroscopy, structure determination, and computer analysis, it is possible to collect functional information on molecules at specific times and in specific environments. Such information not only reveals the properties and mechanisms of action of molecules but also provides insights that can be applied to various industries, such as the development of new materials and drugs. Herein, I discuss the importance of molecular dynamics studies, present the time scale of molecular motion, and review techniques for analyzing molecular dynamics.