Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(6): e111965, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36744604

RESUMEN

Centromere protein A (CENP-A) nucleosomes containing the centromere-specific histone H3 variant CENP-A represent an epigenetic mark that specifies centromere position. The Mis18 complex is a licensing factor for new CENP-A deposition via the CENP-A chaperone, Holliday junction recognition protein (HJURP), on the centromere chromatin. Chicken KINETOCHORE NULL2 (KNL2) (ggKNL2), a Mis18 complex component, has a CENP-C-like motif, and our previous study suggested that ggKNL2 directly binds to the CENP-A nucleosome to recruit HJURP/CENP-A to the centromere. However, the molecular basis for CENP-A nucleosome recognition by ggKNL2 has remained unclear. Here, we present the cryo-EM structure of the chicken CENP-A nucleosome in complex with a ggKNL2 fragment containing the CENP-C-like motif. Chicken KNL2 distinguishes between CENP-A and histone H3 in the nucleosome using the CENP-C-like motif and its downstream region. Both the C-terminal tail and the RG-loop of CENP-A are simultaneously recognized as CENP-A characteristics. The CENP-A nucleosome-ggKNL2 interaction is thus essential for KNL2 functions. Furthermore, our structural, biochemical, and cell biology data indicate that ggKNL2 changes its binding partner at the centromere during chicken cell cycle progression.


Asunto(s)
Histonas , Nucleosomas , Autoantígenos/genética , Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Proteína A Centromérica/metabolismo , Microscopía por Crioelectrón , Histonas/metabolismo , Proteínas de Unión al ADN/química , Animales , Pollos
2.
EMBO J ; 40(5): e105671, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33463726

RESUMEN

The CENP-A nucleosome is a key structure for kinetochore assembly. Once the CENP-A nucleosome is established in the centromere, additional proteins recognize the CENP-A nucleosome to form a kinetochore. CENP-C and CENP-N are CENP-A binding proteins. We previously demonstrated that vertebrate CENP-C binding to the CENP-A nucleosome is regulated by CDK1-mediated CENP-C phosphorylation. However, it is still unknown how the phosphorylation of CENP-C regulates its binding to CENP-A. It is also not completely understood how and whether CENP-C and CENP-N act together on the CENP-A nucleosome. Here, using cryo-electron microscopy (cryo-EM) in combination with biochemical approaches, we reveal a stable CENP-A nucleosome-binding mode of CENP-C through unique regions. The chicken CENP-C structure bound to the CENP-A nucleosome is stabilized by an intramolecular link through the phosphorylated CENP-C residue. The stable CENP-A-CENP-C complex excludes CENP-N from the CENP-A nucleosome. These findings provide mechanistic insights into the dynamic kinetochore assembly regulated by CDK1-mediated CENP-C phosphorylation.


Asunto(s)
Proteína A Centromérica/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Microscopía por Crioelectrón/métodos , Cinetocoros/metabolismo , Nucleosomas/metabolismo , Animales , Centrómero/ultraestructura , Proteína A Centromérica/ultraestructura , Pollos , Proteínas Cromosómicas no Histona/ultraestructura , Cinetocoros/ultraestructura , Modelos Moleculares , Nucleosomas/ultraestructura , Fosforilación , Conformación Proteica
3.
Immunity ; 42(5): 839-849, 2015 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-25979418

RESUMEN

DNGR-1 is a C-type lectin receptor that binds F-actin exposed by dying cells and facilitates cross-presentation of dead cell-associated antigens by dendritic cells. Here we present the structure of DNGR-1 bound to F-actin at 7.7 Å resolution. Unusually for F-actin binding proteins, the DNGR-1 ligand binding domain contacts three actin subunits helically arranged in the actin filament, bridging over two protofilaments, as well as two neighboring actin subunits along one protofilament. Mutation of residues predicted to mediate ligand binding led to loss of DNGR-1-dependent cross-presentation of dead cell-associated antigens, formally demonstrating that the latter depends on F-actin recognition. Notably, DNGR-1 has relatively modest affinity for F-actin but multivalent interactions allow a marked increase in binding strength. Our findings shed light on modes of actin binding by cellular proteins and reveal how extracellular detection of cytoskeletal components by dedicated receptors allows immune monitoring of loss of cellular integrity.


Asunto(s)
Actinas/química , Reactividad Cruzada , Células Dendríticas/inmunología , Lectinas Tipo C/química , Modelos Moleculares , Receptores Inmunológicos/química , Actinas/metabolismo , Animales , Células Cultivadas , Humanos , Ratones , Mutación , Unión Proteica
4.
PLoS Biol ; 19(4): e3001231, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33905418

RESUMEN

MgtE is a Mg2+ channel conserved in organisms ranging from prokaryotes to eukaryotes, including humans, and plays an important role in Mg2+ homeostasis. The previously determined MgtE structures in the Mg2+-bound, closed-state, and structure-based functional analyses of MgtE revealed that the binding of Mg2+ ions to the MgtE cytoplasmic domain induces channel inactivation to maintain Mg2+ homeostasis. There are no structures of the transmembrane (TM) domain for MgtE in Mg2+-free conditions, and the pore-opening mechanism has thus remained unclear. Here, we determined the cryo-electron microscopy (cryo-EM) structure of the MgtE-Fab complex in the absence of Mg2+ ions. The Mg2+-free MgtE TM domain structure and its comparison with the Mg2+-bound, closed-state structure, together with functional analyses, showed the Mg2+-dependent pore opening of MgtE on the cytoplasmic side and revealed the kink motions of the TM2 and TM5 helices at the glycine residues, which are important for channel activity. Overall, our work provides structure-based mechanistic insights into the channel gating of MgtE.


Asunto(s)
Antiportadores/química , Proteínas Bacterianas/química , Activación del Canal Iónico/fisiología , Antiportadores/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión/efectos de los fármacos , Transporte Biológico , Microscopía por Crioelectrón , Cristalografía por Rayos X , Citoplasma/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Cinética , Magnesio/metabolismo , Magnesio/farmacología , Modelos Moleculares , Dominios Proteicos/efectos de los fármacos , Dominios Proteicos/fisiología , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Thermus thermophilus/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34035173

RESUMEN

The proton motive force (PMF) consists of the electric potential difference (Δψ), which is measured as membrane voltage, and the proton concentration difference (ΔpH) across the cytoplasmic membrane. The flagellar protein export machinery is composed of a PMF-driven transmembrane export gate complex and a cytoplasmic ATPase ring complex consisting of FliH, FliI, and FliJ. ATP hydrolysis by the FliI ATPase activates the export gate complex to become an active protein transporter utilizing Δψ to drive proton-coupled protein export. An interaction between FliJ and a transmembrane ion channel protein, FlhA, is a critical step for Δψ-driven protein export. To clarify how Δψ is utilized for flagellar protein export, we analyzed the export properties of the export gate complex in the absence of FliH and FliI. The protein transport activity of the export gate complex was very low at external pH 7.0 but increased significantly with an increase in Δψ by an upward shift of external pH from 7.0 to 8.5. This observation suggests that the export gate complex is equipped with a voltage-gated mechanism. An increase in the cytoplasmic level of FliJ and a gain-of-function mutation in FlhA significantly reduced the Δψ dependency of flagellar protein export by the export gate complex. However, deletion of FliJ decreased Δψ-dependent protein export significantly. We propose that Δψ is required for efficient interaction between FliJ and FlhA to open the FlhA ion channel to conduct protons to drive flagellar protein export in a Δψ-dependent manner.


Asunto(s)
Proteínas Bacterianas/metabolismo , Flagelos/metabolismo , Activación del Canal Iónico , Salmonella/metabolismo , Potenciales de la Membrana , Transporte de Proteínas
6.
Mol Microbiol ; 113(4): 755-765, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31828860

RESUMEN

The bacterial flagellar motor accommodates ten stator units around the rotor to produce large torque at high load. But when external load is low, some previous studies showed that a single stator unit can spin the rotor at the maximum speed, suggesting that the maximum speed does not depend on the number of active stator units, whereas others reported that the speed is also dependent on the stator number. To clarify these two controversial observations, much more precise measurements of motor rotation would be required at external load as close to zero as possible. Here, we constructed a Salmonella filament-less mutant that produces a rigid, straight, twice longer hook to efficiently label a 60 nm gold particle and analyzed flagellar motor dynamics at low load close to zero. The maximum motor speed was about 400 Hz. Large speed fluctuations and long pausing events were frequently observed, and they were suppressed by either over-expression of the MotAB stator complex or increase in the external load, suggesting that the number of active stator units in the motor largely fluctuates near zero load. We conclude that the lifetime of the active stator unit becomes much shorter when the motor operates near zero load.


Asunto(s)
Flagelos/fisiología , Proteínas Motoras Moleculares/metabolismo , Salmonella/fisiología , Proteínas Bacterianas/metabolismo , Rotación , Torque
7.
Curr Top Microbiol Immunol ; 427: 91-107, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31172377

RESUMEN

The bacterial flagellum is a supramolecular motility machine consisting of the basal body, the hook, and the filament. For construction of the flagellum beyond the cellular membranes, a type III protein export apparatus uses ATP and proton-motive force (PMF) across the cytoplasmic membrane as the energy sources to transport flagellar component proteins from the cytoplasm to the distal end of the growing flagellar structure. The protein export apparatus consists of a PMF-driven transmembrane export gate complex and a cytoplasmic ATPase complex. In addition, the basal body C ring acts as a sorting platform for the cytoplasmic ATPase complex that efficiently brings export substrates and type III export chaperone-substrate complexes from the cytoplasm to the export gate complex. In this book chapter, we will summarize our current understanding of molecular organization and assembly of the flagellar type III protein export apparatus.


Asunto(s)
Sistemas de Secreción Tipo III/biosíntesis , Sistemas de Secreción Tipo III/química , Proteínas Bacterianas , Flagelos , Transporte de Proteínas , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , Sistemas de Secreción Tipo III/metabolismo
8.
J Bacteriol ; 202(3)2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31712281

RESUMEN

FlhA and FlhB are transmembrane proteins of the flagellar type III protein export apparatus, and their C-terminal cytoplasmic domains (FlhAC and FlhBC) coordinate flagellar protein export with assembly. FlhBC undergoes autocleavage between Asn-269 and Pro-270 in a well-conserved NPTH loop located between FlhBCN and FlhBCC polypeptides and interacts with the C-terminal domain of the FliK ruler when the length of the hook has reached about 55 nm in Salmonella As a result, the flagellar protein export apparatus switches its substrate specificity, thereby terminating hook assembly and initiating filament assembly. The mechanism of export switching remains unclear. Here, we report the role of FlhBC cleavage in the switching mechanism. Photo-cross-linking experiments revealed that the flhB(N269A) and flhB(P270A) mutations did not affect the binding affinity of FlhBC for FliK. Genetic analysis of the flhB(P270A) mutant revealed that the P270A mutation affects a FliK-dependent conformational change of FlhBC, thereby inhibiting the substrate specificity switching. The flhA(A489E) mutation in FlhAC suppressed the flhB(P270A) mutation, suggesting that an interaction between FlhBC and FlhAC is critical for the export switching. We propose that the interaction between FliKC and a cleaved form of FlhBC promotes a conformational change in FlhBC responsible for the termination of hook-type protein export and a structural remodeling of the FlhAC ring responsible for the initiation of filament-type protein export.IMPORTANCE The flagellar type III protein export apparatus coordinates protein export with assembly, which allows the flagellum to be efficiently built at the cell surface. Hook completion is an important morphological checkpoint for the sequential flagellar assembly process. The protein export apparatus switches its substrate specificity from the hook protein to the filament protein upon hook completion. FliK, FlhB, and FlhA are involved in the export-switching process, but the mechanism remains a mystery. By analyzing a slow-cleaving flhB(P270A) mutant, we provide evidence that an interaction between FliK and FlhB induces conformational rearrangements in FlhB, followed by a structural remodeling of the FlhA ring structure that terminates hook assembly and initiates filament formation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Flagelos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Bacterianas/genética , Flagelos/genética , Proteínas de la Membrana/genética , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Especificidad por Sustrato
9.
J Bacteriol ; 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32482724

RESUMEN

The bacterial flagellum is an organelle responsible for motility and has a rotary motor comprising the rotor and the stator. Flagellar biogenesis is initiated by the assembly of the MS-ring, a supramolecular complex embedded in the cytoplasmic membrane. The MS-ring consists of a few dozen copies of the transmembrane FliF protein, and is an essential core structure which is a part of the rotor. The number and location of the flagella are controlled by the FlhF and FlhG proteins in some species. However, there is no clarity on the factors initiating MS-ring assembly, and contribution of FlhF/FlhG to this process. Here, we show that FlhF and a C-ring component FliG facilitate Vibrio MS-ring formation. When Vibrio FliF alone was expressed in Escherichia coli cells, MS-ring formation rarely occurred, indicating the requirement of other factors for MS-ring assembly. Consequently, we investigated if FlhF aided FliF in MS-ring assembly. We found that FlhF allowed GFP-fused FliF to localize at the cell pole in a Vibrio cell, suggesting that it increases local concentration of FliF at the pole. When FliF was co-expressed with FlhF in E. coli cells, the MS-ring was effectively formed, indicating that FlhF somehow contributes to MS-ring formation. The isolated MS-ring structure was similar to the MS-ring formed by Salmonella FliF. Interestingly, FliG facilitates MS-ring formation, suggesting that FliF and FliG assist in each other's assembly into the MS-ring and C-ring. This study aids in understanding the mechanism behind MS-ring assembly using appropriate spatial/temporal regulations.Importance Flagellar formation is initiated by the assembly of the FliF protein into the MS-ring complex, embedded in the cytoplasmic membrane. The appropriate spatial/temporal control of MS-ring formation is important for the morphogenesis of the bacterial flagellum. Here, we focus on the assembly mechanism of Vibrio FliF into the MS-ring. FlhF, a positive regulator of the number and location of flagella, recruits the FliF molecules at the cell pole and facilitates MS-ring formation. FliG also facilitates MS-ring formation. Our study showed that these factors control flagellar biogenesis in Vibrio, by initiating the MS-ring assembly. Furthermore, it also implies that flagellar biogenesis is a sophisticated system linked with the expression of certain genes, protein localization and a supramolecular complex assembly.

10.
Genes Cells ; 24(6): 408-421, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30963674

RESUMEN

The flagellar protein export apparatus switches its substrate specificity when hook length has reached approximately 55 nm in Salmonella. The C-terminal cytoplasmic domain of FlhB (FlhBC ) is involved in this switching process. FlhBC consists of FlhBCN and FlhBCC polypeptides. FlhBCC has a flexible C-terminal tail (FlhBCCT ). FlhBCC is involved in substrate recognition, and conformational rearrangements of FlhBCN -FlhBCC boundary are postulated to be required for the export switching. However, it remains unknown how it occurs. To clarify this question, we carried out mutational analysis of highly conserved residues in FlhBC . The flhB(E230A) mutation reduced the FlhB function. The flhB(E11S) mutation restored the protein transport activity of the flhB(E230A) mutant to the wild-type level, suggesting that the interaction of FlhBCN with the extreme N-terminal region of FlhB is required for flagellar protein export. The flhB(R320A) mutation affected hydrophobic interaction networks in FlhBCC , thereby increasing insolubility of FlhBC . The R320A mutation also affected the export switching, thereby producing longer hooks with the filament attached. C-terminal truncations of FlhBCCT induced a conformational change of FlhBCN -FlhBCC boundary, resulting in a loose hook length control. We propose that FlhBCCT may control conformational arrangements of FlhBCN -FlhBCC boundary through the hydrophobic interaction networks of FlhBCC .


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de la Membrana/genética , Salmonella typhi/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Transporte Biológico/genética , Análisis Mutacional de ADN/métodos , Flagelos/genética , Flagelos/fisiología , Proteínas de la Membrana/metabolismo , Mutación , Dominios Proteicos , Transporte de Proteínas/genética , Salmonella/genética , Salmonella/metabolismo , Salmonella typhi/metabolismo , Especificidad por Sustrato
11.
PLoS Biol ; 15(8): e2002281, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28771466

RESUMEN

The bacterial flagellar type III export apparatus, which is required for flagellar assembly beyond the cell membranes, consists of a transmembrane export gate complex and a cytoplasmic ATPase complex. FlhA, FlhB, FliP, FliQ, and FliR form the gate complex inside the basal body MS ring, although FliO is required for efficient export gate formation in Salmonella enterica. However, it remains unknown how they form the gate complex. Here we report that FliP forms a homohexameric ring with a diameter of 10 nm. Alanine substitutions of conserved Phe-137, Phe-150, and Glu-178 residues in the periplasmic domain of FliP (FliPP) inhibited FliP6 ring formation, suppressing flagellar protein export. FliO formed a 5-nm ring structure with 3 clamp-like structures that bind to the FliP6 ring. The crystal structure of FliPP derived from Thermotoga maritia, and structure-based photo-crosslinking experiments revealed that Phe-150 and Ser-156 of FliPP are involved in the FliP-FliP interactions and that Phe-150, Arg-152, Ser-156, and Pro-158 are responsible for the FliP-FliO interactions. Overexpression of FliP restored motility of a ∆fliO mutant to the wild-type level, suggesting that the FliP6 ring is a functional unit in the export gate complex and that FliO is not part of the final gate structure. Copurification assays revealed that FlhA, FlhB, FliQ, and FliR are associated with the FliO/FliP complex. We propose that the assembly of the export gate complex begins with FliP6 ring formation with the help of the FliO scaffold, followed by FliQ, FliR, and FlhB and finally FlhA during MS ring formation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/ultraestructura , Análisis Mutacional de ADN , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Estructura Molecular , Polimerizacion , Salmonella enterica
12.
Mol Microbiol ; 109(6): 723-734, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30069936

RESUMEN

The bacterial flagellar motor is composed of a rotor and a transmembrane ion channel complex that acts as a stator unit. The ion channel complex consists of at least three structural parts: a cytoplasmic domain responsible for the interaction with the rotor, a transmembrane ion channel that forms a pathway for the transit of ions across the cytoplasmic membrane, and a peptidoglycan-binding (PGB) domain that anchors the stator unit to the peptidoglycan (PG) layer. A flexible linker connecting the ion channel and the PGB domain not only coordinates stator assembly with its ion channel activity but also controls the assembly of stator units to the motor in response to changes in the environment. When the ion channel complex encounters the rotor, the N-terminal portion of the PGB domain adopts a partially stretched conformation, allowing the PGB domain to reach and bind to the PG layer. The binding affinity of the PGB domain for the PG layer is affected by the force applied to its anchoring point and to the type of ionic energy source. In this review article, we will present current understanding of autonomous control mechanism of stator assembly in the bacterial flagellar motor.


Asunto(s)
Bacillus subtilis/metabolismo , Escherichia coli/metabolismo , Flagelos/metabolismo , Canales Iónicos/metabolismo , Proteínas Motoras Moleculares/metabolismo , Salmonella typhimurium/metabolismo , Membrana Celular/metabolismo
13.
Genes Cells ; 23(3): 241-247, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29405551

RESUMEN

FliG is a rotor protein of the bacterial flagellar motor. FliG consists of FliGN , FliGM and FliGC domains. Intermolecular FliGM -FliGC interactions promote FliG ring formation on the cytoplasmic face of the MS ring. A conformational change in HelixMC connecting FliGM and FliGC is responsible for the switching between the counterclockwise (CCW) and clockwise (CW) rotational states of the FliG ring. However, it remains unknown how it occurs. Here, we carried out in vivo disulfide cross-linking experiments to see the effect of a CW-locked deletion (∆PAA) in FliG on the FliG ring structure in Salmonella enterica. Higher-order oligomers were observed in the membrane fraction of the fliG(∆PAA + G166C/G194C) strain upon oxidation with iodine in a way similar to FliG(G166C/G194C), indicating that the PAA deletion does not inhibit domain-swap polymerization of FliG. FliG(∆PAA + E174C) formed a cross-linked homodimer whereas FliG(E174C) did not, indicating that Glu174 in HelixMC of one FliG protomer is located much closer to that of its neighboring subunit in the CW motor than in the CCW motor. We will discuss possible helical rearrangements of HelixMC that induce a structural remodeling of the FliG ring upon flagellar motor switching.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Flagelos/metabolismo , Actividad Motora , Salmonella/metabolismo , Eliminación de Secuencia , Proteínas Bacterianas/genética , Reactivos de Enlaces Cruzados/química , Modelos Moleculares , Conformación Proteica , Salmonella/crecimiento & desarrollo , Relación Estructura-Actividad
14.
Proc Natl Acad Sci U S A ; 113(13): 3633-8, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26984495

RESUMEN

FliI and FliJ form the FliI6FliJ ATPase complex of the bacterial flagellar export apparatus, a member of the type III secretion system. The FliI6FliJ complex is structurally similar to the α3ß3γ complex of F1-ATPase. The FliH homodimer binds to FliI to connect the ATPase complex to the flagellar base, but the details are unknown. Here we report the structure of the homodimer of a C-terminal fragment of FliH (FliHC2) in complex with FliI. FliHC2 shows an unusually asymmetric homodimeric structure that markedly resembles the peripheral stalk of the A/V-type ATPases. The FliHC2-FliI hexamer model reveals that the C-terminal domains of the FliI ATPase face the cell membrane in a way similar to the F/A/V-type ATPases. We discuss the mechanism of flagellar ATPase complex formation and a common origin shared by the type III secretion system and the F/A/V-type ATPases.


Asunto(s)
Proteínas Bacterianas/química , ATPasas de Translocación de Protón/química , Sistemas de Secreción Tipo III/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Flagelos/química , Flagelos/genética , Flagelos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Cuaternaria de Proteína , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Homología de Secuencia de Aminoácido , Electricidad Estática , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo
15.
Mol Microbiol ; 105(4): 572-588, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28557186

RESUMEN

The bacterial flagellar export switching machinery consists of a ruler protein, FliK, and an export switch protein, FlhB and switches substrate specificity of the flagellar type III export apparatus upon completion of hook assembly. An interaction between the C-terminal domain of FliK (FliKC ) and the C-terminal cytoplasmic domain of FlhB (FlhBC ) is postulated to be responsible for this switch. FliKC has a compactly folded domain termed FliKT3S4 (residues 268-352) and an intrinsically disordered region composed of the last 53 residues, FliKCT (residues 353-405). Residues 301-350 of FliKT3S4 and the last five residues of FliKCT are critical for the switching function of FliK. FliKCT is postulated to regulate the interaction of FliKT3S4 with FlhBC , but it remains unknown how. Here we report the role of FliKCT in the export switching mechanism. Systematic deletion analyses of FliKCT revealed that residues of 351-370 are responsible for efficient switching of substrate specificity of the export apparatus. Suppressor mutant analyses showed that FliKCT coordinates FliKT3S4 action with the switching. Site-directed photo-cross-linking experiments showed that Val-302 and Ile-304 in the hydrophobic core of FliKT3S4 bind to FlhBC . We propose that FliKCT may induce conformational rearrangements of FliKT3S4 to bind to FlhBC .


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Especificidad por Sustrato/genética , Secuencia de Aminoácidos , Transporte Biológico , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Flagelos/metabolismo , Flagelos/microbiología , Proteínas de la Membrana/metabolismo , Dominios Proteicos , Estructura Terciaria de Proteína , Especificidad por Sustrato/fisiología
16.
Mol Microbiol ; 106(4): 646-658, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28925530

RESUMEN

The proton-driven flagellar motor of Salmonella enterica can accommodate a dozen MotA/B stators in a load-dependent manner. The C-terminal periplasmic domain of MotB acts as a structural switch to regulate the number of active stators in the motor in response to load change. The cytoplasmic loop termed MotAC is responsible for the interaction with a rotor protein, FliG. Here, to test if MotAC is responsible for stator assembly around the rotor in a load-dependent manner, we analyzed the effect of MotAC mutations, M76V, L78W, Y83C, Y83H, I126F, R131L, A145E and E155K, on motor performance over a wide range of external load. All these MotAC mutations reduced the maximum speed of the motor near zero load, suggesting that they reduce the rate of conformational dynamics of MotAC coupled with proton translocation through the MotA/B proton channel. Dissociation of the stators from the rotor by decrease in the load was facilitated by the M76V, Y83H and A145E mutations compared to the wild-type motor. The E155K mutation reduced the number of active stators in the motor from 10 to 6 under extremely high load. We propose that MotAC is responsible for load-dependent assembly and disassembly dynamics of the MotA/B stator units.


Asunto(s)
Proteínas Bacterianas/metabolismo , Salmonella enterica/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Citoplasma/metabolismo , Flagelos/metabolismo , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/metabolismo , Mutación , ATPasas de Translocación de Protón , Protones , Salmonella enterica/genética
17.
Biochem Biophys Res Commun ; 495(2): 1789-1794, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29229393

RESUMEN

The bacterial flagellar hook is a short, curved tubular structure made of FlgE. The hook connects the basal body as a rotary motor and the filament as a helical propeller and functions as a universal joint to smoothly transmit torque produced by the motor to the filament. Salmonella FlgE consists of D0, Dc, D1 and D2 domains. Axial interactions between a triangular loop of domain D1 (D1-loop) and domain D2 are postulated to be responsible for hook supercoiling. In contrast, Bacillus FlgE lacks the D1-loop and domain D2. Here, to clarify the roles of the D1-loop and domain D2 in the mechanical function, we carried out deletion analysis of Salmonella FlgE. A deletion of the D1-loop conferred a loss-of-function phenotype whereas that of domain D2 did not. The D1-loop deletion inhibited hook polymerization. Suppressor mutations of the D1-loop deletion was located within FlgD, which acts as the hook cap to promote hook assembly. This suggests a possible interaction between the D1-loop of FlgE and FlgD. Suppressor mutant cells produced straight hooks, but retained the ability to form a flagellar bundle behind a cell body, suggesting that the loop deletion does not affect the bending flexibility of the Salmonella hook.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Flagelos/química , Flagelos/fisiología , Flagelos/ultraestructura , Genes Bacterianos , Modelos Moleculares , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/metabolismo , Mutación , Dominios Proteicos , Multimerización de Proteína , Salmonella/genética , Salmonella/fisiología , Eliminación de Secuencia , Homología Estructural de Proteína
18.
Biochem Biophys Res Commun ; 496(1): 12-17, 2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29294326

RESUMEN

The bacterial flagellar motor rotates in both counterclockwise (CCW) and clockwise (CW) directions. FliG, FliM and FliN form the C ring on the cytoplasmic face of the MS ring made of a transmembrane protein, FliF. The C ring acts not only as a rotor but also as a switch of the direction of motor rotation. FliG consists of three domains: FliGN, FliGM and FliGC. FliGN directly binds to FliF. Intermolecular interactions between FliGM and FliGC drive FliG ring formation. FliGM is responsible for the interaction with FliM. FliGC is involved in the interaction with the stator protein MotA. Adaptive remodeling of the C ring occurs when the motor switches between the CCW and CW states. However, it remained unknown how. Here, we report the effects of a CW-locked deletion mutation (ΔPEV) in FliG of Thermotaoga maritia (Tm-FliG) on FliG-FliG and FliG-FliM interactions. The PEV deletion stabilized the intramolecular interaction between FliGM and FliGC, thereby suppressing the oligomerization of Tm-FliGMC in solution. This deletion also induced a conformational change of HelixMC connecting FliGM and FliGC to reduce the binding affinity of Tm-FliGMC for FliM. We will discuss adaptive remodeling of the C ring responsible for flagellar motor switching.


Asunto(s)
Proteínas Bacterianas/química , Flagelos/química , Proteínas Motoras Moleculares/química , Movimiento (Física) , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Proteínas Motoras Moleculares/ultraestructura , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
19.
PLoS Pathog ; 12(3): e1005495, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26943926

RESUMEN

The bacterial flagellar type III export apparatus utilizes ATP and proton motive force (PMF) to transport flagellar proteins to the distal end of the growing flagellar structure for self-assembly. The transmembrane export gate complex is a H+-protein antiporter, of which activity is greatly augmented by an associated cytoplasmic ATPase complex. Here, we report that the export gate complex can use sodium motive force (SMF) in addition to PMF across the cytoplasmic membrane to drive protein export. Protein export was considerably reduced in the absence of the ATPase complex and a pH gradient across the membrane, but Na+ increased it dramatically. Phenamil, a blocker of Na+ translocation, inhibited protein export. Overexpression of FlhA increased the intracellular Na+ concentration in the presence of 100 mM NaCl but not in its absence, suggesting that FlhA acts as a Na+ channel. In wild-type cells, however, neither Na+ nor phenamil affected protein export, indicating that the Na+ channel activity of FlhA is suppressed by the ATPase complex. We propose that the export gate by itself is a dual fuel engine that uses both PMF and SMF for protein export and that the ATPase complex switches this dual fuel engine into a PMF-driven export machinery to become much more robust against environmental changes in external pH and Na+ concentration.


Asunto(s)
Flagelos/metabolismo , ATPasas de Translocación de Protón/metabolismo , Salmonella/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Flagelos/genética , Hidrógeno/metabolismo , Mutación , Regiones Promotoras Genéticas/genética , Transporte de Proteínas , ATPasas de Translocación de Protón/genética , Salmonella/genética , Sodio/metabolismo
20.
Adv Exp Med Biol ; 1105: 25-42, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30617822

RESUMEN

Visualization of macromolecular structures is essential for understanding the mechanisms of biological functions because they are all determined by the structure and dynamics of macromolecular complexes. Electron cryomicroscopy (cryoEM) and image analysis has become a powerful tool for structural studies because of recent technical developments in microscope optics, cryostage control, image detection and the methods of sample preparation. In particular, the recent development of CMOS-based direct electron detectors with high sensitivity, high resolution and high frame rate has revolutionized the field of structural biology by making near-atomic resolution structural analysis possible from small amounts of solution samples. However, for some biological systems, it is still difficult to reach high resolution due to somewhat flexible nature of the structure, and a complementary use of cryoEM with X-ray crystallography is essential and useful to gain mechanistic understanding of the biological functions and mechanisms. We will describe our strategy for the structural analyses of actin filament and actomyosin rigor complex and the biological insights we gained from these structures.


Asunto(s)
Actinas/química , Actomiosina/química , Microscopía por Crioelectrón , Cristalografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA