Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(10): 4814-4830, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-36928138

RESUMEN

The Paf1 complex (Paf1C) is a conserved transcription elongation factor that regulates transcription elongation efficiency, facilitates co-transcriptional histone modifications, and impacts molecular processes linked to RNA synthesis, such as polyA site selection. Coupling of the activities of Paf1C to transcription elongation requires its association with RNA polymerase II (Pol II). Mutational studies in yeast identified Paf1C subunits Cdc73 and Rtf1 as important mediators of Paf1C association with Pol II on active genes. While the interaction between Rtf1 and the general elongation factor Spt5 is relatively well-understood, the interactions involving Cdc73 have not been fully elucidated. Using a site-specific protein cross-linking strategy in yeast cells, we identified direct interactions between Cdc73 and two components of the Pol II elongation complex, the elongation factor Spt6 and the largest subunit of Pol II. Both of these interactions require the tandem SH2 domain of Spt6. We also show that Cdc73 and Spt6 can interact in vitro and that rapid depletion of Spt6 dissociates Paf1 from chromatin, altering patterns of Paf1C-dependent histone modifications genome-wide. These results reveal interactions between Cdc73 and the Pol II elongation complex and identify Spt6 as a key factor contributing to the occupancy of Paf1C at active genes in Saccharomyces cerevisiae.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Nucleares/metabolismo , Factores de Elongación de Péptidos/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
2.
Appl Environ Microbiol ; 86(4)2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31811038

RESUMEN

Plant-derived aldehydes are constituents of essential oils that possess broad-spectrum antimicrobial activity and kill microorganisms without promoting resistance. In our previous study, we incorporated p-anisaldehyde from star anise into a polymer network called proantimicrobial networks via degradable acetals (PANDAs) and used it as a novel drug delivery platform. PANDAs released p-anisaldehyde upon a change in pH and humidity and controlled the growth of the multidrug-resistant pathogen Pseudomonas aeruginosa PAO1. In this study, we identified the cellular pathways targeted by p-anisaldehyde by generating 10,000 transposon mutants of PAO1 and screened them for hypersensitivity to p-anisaldehyde. To improve the antimicrobial efficacy of p-anisaldehyde, we combined it with epigallocatechin gallate (EGCG), a polyphenol from green tea, and demonstrated that it acts synergistically with p-anisaldehyde in killing P. aeruginosa We then used transcriptome sequencing to profile the responses of P. aeruginosa to p-anisaldehyde, EGCG, and their combination. The exposure to p-anisaldehyde altered the expression of genes involved in modification of the cell envelope, membrane transport, drug efflux, energy metabolism, molybdenum cofactor biosynthesis, and the stress response. We also demonstrate that the addition of EGCG reversed many p-anisaldehyde-coping effects and induced oxidative stress. Our results provide insight into the antimicrobial activity of p-anisaldehyde and its interactions with EGCG and may aid in the rational identification of new synergistically acting combinations of plant metabolites. Our study also confirms the utility of the thiol-ene polymer platform for the sustained and effective delivery of hydrophobic and volatile antimicrobial compounds.IMPORTANCE Essential oils (EOs) are plant-derived products that have long been exploited for their antimicrobial activities in medicine, agriculture, and food preservation. EOs represent a promising alternative to conventional antibiotics due to their broad-range antimicrobial activity, low toxicity to human commensal bacteria, and capacity to kill microorganisms without promoting resistance. Despite the progress in the understanding of the biological activity of EOs, our understanding of many aspects of their mode of action remains inconclusive. The overarching aim of this work was to address these gaps by studying the molecular interactions between an antimicrobial plant aldehyde and the opportunistic human pathogen Pseudomonas aeruginosa The results of this study identify the microbial genes and associated pathways involved in the response to antimicrobial phytoaldehydes and provide insights into the molecular mechanisms governing the synergistic effects of individual constituents within essential oils.


Asunto(s)
Antibacterianos/farmacología , Benzaldehídos/farmacología , Catequina/análogos & derivados , Farmacorresistencia Bacteriana Múltiple , Pseudomonas aeruginosa/efectos de los fármacos , Catequina/farmacología , Pruebas de Sensibilidad Microbiana
3.
Front Microbiol ; 9: 3049, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619140

RESUMEN

The U. S. Gulf of Mexico is experiencing a dramatic increase in tidal marsh restoration actions, which involves planting coastal areas with smooth cordgrass (Spartina alterniflora) and black needlerush (Juncus roemerianus) for erosion control and to provide habitat for fish and wildlife. It can take decades for sedimentary cycles in restored marshes to approach reference conditions, and the contribution of the sediment microbial communities to these processes is poorly elucidated. In this study, we addressed this gap by comparing rhizosphere microbiomes of S. alterniflora and J. roemerianus from two restored marshes and a natural reference marsh located at Deer Island, MS. Our results revealed that plants from the restored and reference areas supported similar microbial diversity indicating the rapid colonization of planted grasses with indigenous soil microbiota. Although close in composition, the microbial communities from the three studied sites differed significantly in the relative abundance of specific taxa. The observed differences are likely driven by the host plant identity and properties of sediment material used for the creation of restored marshes. Some of the differentially distributed groups of bacteria include taxa involved in the cycling of carbon, nitrogen, and sulfur, and may influence the succession of vegetation at the restored sites to climax condition. We also demonstrated that plants from the restored and reference sites vary in the frequency of culturable rhizobacteria that exhibit traits commonly associated with the promotion of plant growth and suppression of phytopathogenic fungi. Our findings will contribute to the establishment of benchmarks for the assessment of the outcome of coastal restoration projects in the Gulf of Mexico and better define factors that affect the long-term resiliency of tidal marshes and their vulnerability to climate change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA