Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Breast Cancer Res ; 26(1): 104, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918836

RESUMEN

BACKGROUND: Immune-positron emission tomography (PET) imaging with tracers that target CD8 and granzyme B has shown promise in predicting the therapeutic response following immune checkpoint blockade (ICB) in immunologically "hot" tumors. However, immune dynamics in the low T-cell infiltrating "cold" tumor immune microenvironment during ICB remain poorly understood. This study uses molecular imaging to evaluate changes in CD4 + T cells and CD8 + T cells during ICB in breast cancer models and examines biomarkers of response. METHODS: [89Zr]Zr-DFO-CD4 and [89Zr]Zr-DFO-CD8 radiotracers were used to quantify changes in intratumoral and splenic CD4 T cells and CD8 T cells in response to ICB treatment in 4T1 and MMTV-HER2 mouse models, which represent immunologically "cold" tumors. A correlation between PET quantification metrics and long-term anti-tumor response was observed. Further biological validation was obtained by autoradiography and immunofluorescence. RESULTS: Following ICB treatment, an increase in the CD8-specific PET signal was observed within 6 days, and an increase in the CD4-specific PET signal was observed within 2 days in tumors that eventually responded to immunotherapy, while no significant differences in CD4 or CD8 were found at the baseline of treatment that differentiated responders from nonresponders. Furthermore, mice whose tumors responded to ICB had a lower CD8 PET signal in the spleen and a higher CD4 PET signal in the spleen compared to non-responders. Intratumoral spatial heterogeneity of the CD8 and CD4-specific PET signals was lower in responders compared to non-responders. Finally, PET imaging, autoradiography, and immunofluorescence signals were correlated when comparing in vivo imaging to ex vivo validations. CONCLUSIONS: CD4- and CD8-specific immuno-PET imaging can be used to characterize the in vivo distribution of CD4 + and CD8 + T cells in response to immune checkpoint blockade. Imaging metrics that describe the overall levels and distribution of CD8 + T cells and CD4 + T cells can provide insight into immunological alterations, predict biomarkers of response to immunotherapy, and guide clinical decision-making in those tumors where the kinetics of the response differ.


Asunto(s)
Neoplasias de la Mama , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Modelos Animales de Enfermedad , Inhibidores de Puntos de Control Inmunológico , Tomografía de Emisión de Positrones , Microambiente Tumoral , Animales , Microambiente Tumoral/inmunología , Femenino , Ratones , Linfocitos T CD8-positivos/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Tomografía de Emisión de Positrones/métodos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/terapia , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Línea Celular Tumoral , Circonio , Radiofármacos , Radioisótopos
2.
Biomedicines ; 11(1)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36672633

RESUMEN

Hypoxia is a common feature of the tumor microenvironment, including that of triple-negative breast cancer (TNBC), an aggressive breast cancer subtype with a high five-year mortality rate. Using [18F]-fluoromisonidazole (FMISO) positron emission tomography (PET) imaging, we aimed to monitor changes in response to immunotherapy (IMT) with chemotherapy in TNBC. TNBC-tumor-bearing mice received paclitaxel (PTX) ± immune checkpoint inhibitors anti-programmed death 1 and anti-cytotoxic T-lymphocyte 4. FMISO-PET imaging was performed on treatment days 0, 6, and 12. Max and mean standard uptake values (SUVmax and SUVmean, respectively), histological analyses, and flow cytometry results were compared. FMISO-PET imaging revealed differences in tumor biology between treatment groups prior to tumor volume changes. 4T1 responders showed SUVmean 1.6-fold lower (p = 0.02) and 1.8-fold lower (p = 0.02) than non-responders on days 6 and 12, respectively. E0771 responders showed SUVmean 3.6-fold lower (p = 0.001) and 2.7-fold lower (p = 0.03) than non-responders on days 6 and 12, respectively. Immunohistochemical analyses revealed IMT plus PTX decreased hypoxia and proliferation and increased vascularity compared to control. Combination IMT/PTX recovered the loss of CD4+ T-cells observed with single-agent therapies. PET imaging can provide timely, longitudinal data on the TNBC tumor microenvironment, specifically intratumoral hypoxia, predicting therapeutic response to IMT plus chemotherapy.

3.
Pharmaceutics ; 14(2)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35214172

RESUMEN

Advancements in monitoring and predicting of patient-specific response of triple negative breast cancer (TNBC) to immunotherapy (IMT) with and without chemotherapy are needed. Using granzyme B-specific positron emission tomography (GZP-PET) imaging, we aimed to monitor changes in effector cell activation in response to IMT with chemotherapy in TNBC. TNBC mouse models received the paclitaxel (PTX) ± immune checkpoint inhibitors anti-programmed death 1 (anti-PD1) and anti-cytotoxic T-lymphocyte 4 (anti-CTLA4). GZP-PET imaging was performed on treatment days 0, 3, and 6. Mean standard uptake value (SUVmean), effector cell fractions, and SUV histograms were compared. Mice were sacrificed at early imaging timepoints for cytokine and histological analyses. GZP-PET imaging data revealed differences prior to tumor volume changes. By day six, responders had SUVmean ≥ 2.2-fold higher (p < 0.0037) and effector cell fractions ≥ 1.9-fold higher (p = 0.03) compared to non-responders. IMT/PTX resulted in a significantly different SUV distribution compared to control, indicating broader distribution of activated intratumoral T-cells. IMT/PTX resulted in significantly more necrotic tumor tissue and increased levels of IL-2, 4, and 12 compared to control. Results implicate immunogenic cell death through upregulation of key Th1/Th2 cytokines by IMT/PTX. Noninvasive PET imaging can provide data on the TNBC tumor microenvironment, specifically intratumoral effector cell activation, predicting response to IMT plus chemotherapy.

4.
Mol Cancer Ther ; 19(9): 1922-1929, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32606015

RESUMEN

Maximal safe resection of malignant tissue is associated with improved progression-free survival and better response to radiation and chemotherapy for patients with glioblastoma (GBM). 5-Aminolevulinic acid (5-ALA) is the current FDA-approved standard for intraoperative brain tumor visualization. Unfortunately, autofluorescence in diffuse areas and high fluorescence in dense tissues significantly limit discrimination at tumor margins. This study is the first to compare 5-ALA to an investigational new drug, panitumumab-IRDye800CW, in the same animal model. A patient-derived GBM xenograft model was established in 16 nude mice, which later received injections of 5-ALA, panitumumab-IRDye800CW, IRDye800CW, 5-ALA and IRDye800CW, or 5-ALA and panitumumab-IRDye800CW. Brains were prepared for multi-instrument fluorescence imaging, IHC, and quantitative analysis of tumor-to-background ratio (TBR) and tumor margin accuracy. Statistical analysis was compared with Wilcoxon rank-sum or paired t test. Panitumumab-IRDye800CW had a 30% higher comprehensive TBR compared with 5-ALA (P = 0.0079). SDs for core and margin regions of interest in 5-ALA-treated tissues were significantly higher than those found in panitumumab-IRDye800CW-treated tissues (P = 0.0240 and P = 0.0284, respectively). Panitumumab-IRDye800CW specificities for tumor core and margin were more than 10% higher than those of 5-ALA. Higher AUC for panitumumab-IRDye800CW indicated strong capability to discriminate between normal and malignant brain tissue when compared with 5-ALA. This work demonstrates that panitumumab-IRDye800CW shows potential as a targeting agent for fluorescence intraoperative detection of GBM. Improved margin definition and surgical resection using panitumumab-IRDye800 has the potential to improve surgical outcomes and survival in patients with GBM compared with 5-ALA.


Asunto(s)
Ácido Aminolevulínico/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Glioblastoma/diagnóstico por imagen , Glioblastoma/tratamiento farmacológico , Imagen Óptica/métodos , Panitumumab/uso terapéutico , Fármacos Fotosensibilizantes/uso terapéutico , Ácido Aminolevulínico/farmacología , Animales , Antineoplásicos Inmunológicos/farmacología , Femenino , Humanos , Ratones , Ratones Desnudos , Panitumumab/farmacología , Fármacos Fotosensibilizantes/farmacología
5.
Semin Nucl Med ; 50(6): 488-504, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33059819

RESUMEN

The use of biomarkers is integral to the routine management of cancer patients, including diagnosis of disease, clinical staging and response to therapeutic intervention. Advanced imaging metrics with computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) are used to assess response during new drug development and in cancer research for predictive metrics of response. Key components and challenges to identifying an appropriate imaging biomarker are selection of integral vs integrated biomarkers, choosing an appropriate endpoint and modality, and standardization of the imaging biomarkers for cooperative and multicenter trials. Imaging biomarkers lean on the original proposed quantified metrics derived from imaging such as tumor size or longest dimension, with the most commonly implemented metrics in clinical trials coming from the Response Evaluation Criteria in Solid Tumors (RECIST) criteria, and then adapted versions such as immune-RECIST (iRECIST) and Positron Emission Tomography Response Criteria in Solid Tumors (PERCIST) for immunotherapy response and PET imaging, respectively. There have been many widely adopted biomarkers in clinical trials derived from MRI including metrics that describe cellularity and vascularity from diffusion-weighted (DW)-MRI apparent diffusion coefficient (ADC) and Dynamic Susceptibility Contrast (DSC) or dynamic contrast enhanced (DCE)-MRI (Ktrans, relative cerebral blood volume (rCBV)), respectively. Furthermore, Fluorodexoyglucose (FDG), fluorothymidine (FLT), and fluoromisonidazole (FMISO)-PET imaging, which describe molecular markers of glucose metabolism, proliferation and hypoxia have been implemented into various cancer types to assess therapeutic response to a wide variety of targeted- and chemotherapies. Recently, there have been many functional and molecular novel imaging biomarkers that are being developed that are rapidly being integrated into clinical trials (with anticipation of being implemented into clinical workflow in the future), such as artificial intelligence (AI) and machine learning computational strategies, antibody and peptide specific molecular imaging, and advanced diffusion MRI. These include prostate-specific membrane antigen (PSMA) and trastuzumab-PET, vascular tumor burden extracted from contrast-enhanced CT, diffusion kurtosis imaging, and CD8 or Granzyme B PET imaging. Further excitement surrounds theranostic procedures such as the combination of 68Ga/111In- and 177Lu-DOTATATE to use integral biomarkers to direct care and personalize therapy. However, there are many challenges in the implementation of imaging biomarkers that remains, including understand the accuracy, repeatability and reproducibility of both acquisition and analysis of these imaging biomarkers. Despite the challenges associated with the biological and technical validation of novel imaging biomarkers, a distinct roadmap has been created that is being implemented into many clinical trials to advance the development and implementation to create specific and sensitive novel imaging biomarkers of therapeutic response to continue to transform medical oncology.


Asunto(s)
Ensayos Clínicos como Asunto , Diagnóstico por Imagen , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Biomarcadores de Tumor/metabolismo , Humanos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA