Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Histochem Cell Biol ; 155(2): 203-214, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33372249

RESUMEN

The morphometric analysis of lung structure using the principles of stereology has emerged as a powerful tool to describe the structural changes in lung architecture that accompany the development of lung disease that is experimentally modelled in adult mice. These stereological principles are now being applied to the study of the evolution of the lung architecture over the course of prenatal and postnatal lung development in mouse neonates and adolescents. The immature lung is structurally and functionally distinct from the adult lung, and has a smaller volume than does the adult lung. These differences have raised concerns about whether the inflation fixation of neonatal mouse lungs with the airway pressure (Paw) used for the inflation fixation of adult mouse lungs may cause distortion of the neonatal mouse lung structure, leading to the generation of artefacts in subsequent analyses. The objective of this study was to examine the impact of a Paw of 10, 20 and 30 cmH2O on the estimation of lung volumes and stereologically assessed parameters that describe the lung structure in developing mouse lungs. The data presented demonstrate that low Paw (10 cmH2O) leads to heterogeneity in the unfolding of alveolar structures within the lungs, and that high Paw (30 cmH2O) leads to an overestimation of the lung volume, and thus, affects the estimation of volume-dependent parameters, such as total alveoli number and gas-exchange surface area. Thus, these data support the use of a Paw of 20 cmH2O for inflation fixation in morphometric studies on neonatal mouse lungs.


Asunto(s)
Pulmón/crecimiento & desarrollo , Presión , Animales , Ratones , Ratones Endogámicos C57BL
2.
Am J Physiol Lung Cell Mol Physiol ; 319(4): L670-L674, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32878480

RESUMEN

The severity of coronavirus disease 2019 (COVID-19) is linked to an increasing number of risk factors, including exogenous (environmental) stimuli such as air pollution, nicotine, and cigarette smoke. These three factors increase the expression of angiotensin I converting enzyme 2 (ACE2), a key receptor involved in the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-the etiological agent of COVID-19-into respiratory tract epithelial cells. Patients with severe COVID-19 are managed with oxygen support, as are at-risk individuals with chronic lung disease. To date, no study has examined whether an increased fraction of inspired oxygen (FiO2) may affect the expression of SARS-CoV-2 entry receptors and co-receptors, including ACE2 and the transmembrane serine proteases TMPRSS1, TMPRSS2, and TMPRSS11D. To address this, steady-state mRNA levels for genes encoding these SARS-CoV-2 receptors were assessed in the lungs of mouse pups chronically exposed to elevated FiO2, and in the lungs of preterm-born human infants chronically managed with an elevated FiO2. These two scenarios served as models of chronic elevated FiO2 exposure. Additionally, SARS-CoV-2 receptor expression was assessed in primary human nasal, tracheal, esophageal, bronchial, and alveolar epithelial cells, as well as primary mouse alveolar type II cells exposed to elevated oxygen concentrations. While gene expression of ACE2 was unaffected, gene and protein expression of TMPRSS11D was consistently upregulated by exposure to an elevated FiO2. These data highlight the need for further studies that examine the relative contribution of the various viral co-receptors on the infection cycle, and point to oxygen supplementation as a potential risk factor for COVID-19.


Asunto(s)
Infecciones por Coronavirus/patología , Proteínas de la Membrana/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/patología , Mucosa Respiratoria/metabolismo , Serina Endopeptidasas/metabolismo , Serina Proteasas/metabolismo , Células Epiteliales Alveolares/metabolismo , Enzima Convertidora de Angiotensina 2 , Animales , Betacoronavirus , COVID-19 , Células Cultivadas , Femenino , Humanos , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Oxígeno/administración & dosificación , Oxígeno/análisis , Pandemias , Receptores Virales/metabolismo , Factores de Riesgo , SARS-CoV-2 , Serina Endopeptidasas/genética , Serina Proteasas/genética , Índice de Severidad de la Enfermedad
3.
RNA ; 24(6): 865-879, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29540511

RESUMEN

The emergence of microRNA as regulators of organogenesis and tissue differentiation has stimulated interest in the ablation of microRNA expression and function during discrete periods of development. To this end, inducible, conditional modulation of microRNA expression with doxycycline-based tetracycline-controlled transactivator and tamoxifen-based estrogen receptor systems has found widespread use. However, the induction agents and components of genome recombination systems negatively impact pregnancy, parturition, and postnatal development; thereby limiting the use of these technologies between late gestation and the early postnatal period. MicroRNA inhibitor (antimiR) administration also represents a means of neutralizing microRNA function in vitro and in vivo. To date, these studies have used direct (parenteral) administration of antimiRs to experimental animals. As an extension of this approach, an alternative means of regulating microRNA expression and function is described here: the maternal-placental-fetal transmission of antimiRs. When administered to pregnant dams, antimiRs were detected in offspring and resulted in a pronounced and persistent reduction in detectable steady-state free microRNA levels in the heart, kidney, liver, lungs, and brain. This effect was comparable to direct injection of newborn mouse pups with antimiRs, although maternal delivery resulted in fewer off-target effects. Furthermore, depletion of steady-state microRNA levels via the maternal route resulted in concomitant increases in steady-state levels of selected microRNA targets. This novel methodology permits the temporal regulation of microRNA function during late gestation and in neonates, without recourse to conventional approaches that rely on doxycycline and tamoxifen, which may confound studies on developmental processes.


Asunto(s)
Feto/metabolismo , Intercambio Materno-Fetal/genética , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Placenta/metabolismo , Animales , Animales Recién Nacidos , Femenino , Ratones , Ratones Endogámicos C57BL , MicroARNs/administración & dosificación , Células 3T3 NIH , Embarazo
4.
Anal Biochem ; 606: 113828, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32745542

RESUMEN

The transfection of synthetic small interfering (si)RNA into cultured cells forms the basis of studies that use RNA interference (commonly referred to as "gene knockdown") to study the impact of loss of gene or protein expression on a biological pathway or process. In these studies, mock transfections (with transfection reagents alone), and the use of synthetic negative control (apparently inert) siRNA are both essential negative controls. This report reveals that three widely-used transfection reagents (X-tremeGENE™, HiPerFect, and Lipofectamine® 2000) and five commercially-available control siRNA (from Ambion, Sigma, Santa Cruz, Cell Signaling Technology, and Qiagen) are not inert in cell-culture studies. Both transfection reagents and control siRNA perturbed steady-state mRNA and protein levels in primary mouse lung fibroblasts and in NIH/3T3 cells (a widely-used mouse embryonic fibroblast cell-line), using components of the canonical transforming growth factor-ß signaling machinery as a model system. Furthermore, transfection reagents and control siRNA reduced the viability and proliferation of both lung fibroblasts and NIH/3T3 cells. These data collectively provide a cautionary note to investigators to carefully consider the impact of control interventions, such as mock transfections and control siRNA, in RNA interference studies with synthetic siRNA.


Asunto(s)
ARN Interferente Pequeño/metabolismo , Transfección , Animales , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Indicadores y Reactivos/química , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Cultivo Primario de Células , ARN Mensajero/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
5.
J Anat ; 232(3): 472-484, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29315540

RESUMEN

The quantitative assessment of the lung architecture forms the foundation of many studies on lung development and lung diseases, where parameters such as alveoli number, alveolar size, and septal thickness are quantitatively influenced by developmental or pathological processes. Given the pressing need for robust data that describe the lung structure, there is currently much enthusiasm for the development and refinement of methodological approaches for the unbiased assessment of lung structure with improved precision. The advent of stereological methods highlights one such approach. However, design-based stereology is both expensive and time-demanding. The objective of this study was to examine whether 'limited' stereological analysis, such as the stereological analysis of a single mouse lung lobe, may serve as a surrogate for studies on whole, intact mouse lungs; both in healthy lungs and in diseased lungs, using an experimental animal model of bronchopulmonary dysplasia (BPD). This served the dual-function of exploring BPD pathobiology, asking whether there are regional (lobar) differences in the responses of developing mouse lungs to oxygen injury, by examining each mouse lung lobe separately in the BPD model. Hyperoxia exposure resulted in decreased alveolar density, alveoli number, and gas-exchange surface area in all five mouse lung lobes, and increased the arithmetic mean septal thickness in all mouse lung lobes except the lobus cardialis. The data presented here suggest that - in healthy developing mice - a single mouse lung lobe might serve as a surrogate for studies on whole, intact mouse lungs. This is not the case for oxygen-injured developing mouse lungs, where a single lobe would not be suitable as a surrogate for the whole, intact lung. Furthermore, as the total number of alveoli can only be determined by an analysis of the entire lung, and given regional differences in lung structure, particularly under pathological conditions, the stereological assessment of the whole, intact lung remains desirable.


Asunto(s)
Displasia Broncopulmonar/patología , Procesamiento de Imagen Asistido por Computador/métodos , Pulmón/anatomía & histología , Modelos Animales , Alveolos Pulmonares/anatomía & histología , Animales , Ratones
6.
Cell Tissue Res ; 367(3): 457-468, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27917436

RESUMEN

Bronchopulmonary dysplasia (BPD) is the most common complication of preterm birth, with appreciable morbidity and mortality in a neonatal intensive care setting. Much interest has been shown in the identification of pathogenic pathways that are amenable to pharmacological manipulation (1) to facilitate the development of novel therapeutic and medical management strategies and (2) to identify the basic mechanisms of late lung development, which remains poorly understood. A number of animal models have therefore been developed and continue to be refined with the aim of recapitulating pathological pulmonary hallmarks noted in lungs from neonates with BPD. These animal models rely on several injurious stimuli, such as mechanical ventilation or oxygen toxicity and infection and sterile inflammation, as applied in mice, rats, rabbits, pigs, lambs and nonhuman primates. This review addresses recent developments in modeling BPD in experimental animals and highlights important neglected areas that demand attention. Additionally, recent progress in the quantitative microscopic analysis of pathology tissue is described, together with new in vitro approaches of value for the study of normal and aberrant alveolarization. The need to examine long-term sequelae of damage to the developing neonatal lung is also considered, as is the need to move beyond the study of the lungs alone in experimental animal models of BPD.


Asunto(s)
Displasia Broncopulmonar/patología , Modelos Animales de Enfermedad , Animales , Humanos , Imagenología Tridimensional , Pulmón/efectos de los fármacos , Pulmón/patología , Oxígeno/farmacología
7.
Pediatr Res ; 81(5): 795-805, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28141790

RESUMEN

BACKGROUND: Caffeine is widely used to manage apnea of prematurity, and reduces the incidence of bronchopulmonary dysplasia (BPD). Deregulated transforming growth factor (TGF)-ß signaling underlies arrested postnatal lung maturation in BPD. It is unclear whether caffeine impacts TGF-ß signaling or postnatal lung development in affected lungs. METHODS: The impact of caffeine on TGF-ß signaling in primary mouse lung fibroblasts and alveolar epithelial type II cells was assessed in vitro. The effects of caffeine administration (25 mg/kg/d for the first 14 d of postnatal life) on aberrant lung development and TGF-ß signaling in vivo was assessed in a hyperoxia (85% O2)-based model of BPD in C57BL/6 mice. RESULTS: Caffeine downregulated expression of type I and type III TGF-ß receptors, and Smad2; and potentiated TGF-ß signaling in vitro. In vivo, caffeine administration normalized body mass under hyperoxic conditions, and normalized Smad2 phosphorylation detected in lung homogenates; however, caffeine administration neither improved nor worsened lung structure in hyperoxia-exposed mice, in which postnatal lung maturation was blunted. CONCLUSION: Caffeine modulated TGF-ß signaling in vitro and in vivo. Caffeine administration was well-tolerated by newborn mice, but did not influence the course of blunted postnatal lung maturation in a hyperoxia-based experimental mouse model of BPD.


Asunto(s)
Displasia Broncopulmonar/tratamiento farmacológico , Cafeína/farmacología , Fibroblastos/efectos de los fármacos , Hiperoxia/complicaciones , Alveolos Pulmonares/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Animales , Animales Recién Nacidos , Displasia Broncopulmonar/etiología , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/fisiopatología , Células Cultivadas , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/patología , Ratones Endogámicos C57BL , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteoglicanos/metabolismo , Alveolos Pulmonares/crecimiento & desarrollo , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/patología , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína Smad2/metabolismo , Factores de Tiempo
10.
Am J Physiol Lung Cell Mol Physiol ; 309(11): L1239-72, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26361876

RESUMEN

Alveolarization is the process by which the alveoli, the principal gas exchange units of the lung, are formed. Along with the maturation of the pulmonary vasculature, alveolarization is the objective of late lung development. The terminal airspaces that were formed during early lung development are divided by the process of secondary septation, progressively generating an increasing number of alveoli that are of smaller size, which substantially increases the surface area over which gas exchange can take place. Disturbances to alveolarization occur in bronchopulmonary dysplasia (BPD), which can be complicated by perturbations to the pulmonary vasculature that are associated with the development of pulmonary hypertension. Disturbances to lung development may also occur in persistent pulmonary hypertension of the newborn in term newborn infants, as well as in patients with congenital diaphragmatic hernia. These disturbances can lead to the formation of lungs with fewer and larger alveoli and a dysmorphic pulmonary vasculature. Consequently, affected lungs exhibit a reduced capacity for gas exchange, with important implications for morbidity and mortality in the immediate postnatal period and respiratory health consequences that may persist into adulthood. It is the objective of this Perspectives article to update the reader about recent developments in our understanding of the molecular mechanisms of alveolarization and the pathogenesis of BPD.


Asunto(s)
Displasia Broncopulmonar/etiología , Displasia Broncopulmonar/patología , Alveolos Pulmonares/patología , Animales , Displasia Broncopulmonar/fisiopatología , Transdiferenciación Celular , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Humanos , Modelos Biológicos , Alveolos Pulmonares/fisiopatología
11.
Am J Physiol Lung Cell Mol Physiol ; 309(7): L710-24, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26232299

RESUMEN

The gasotransmitter hydrogen sulfide (H2S) is emerging as a mediator of lung physiology and disease. Recent studies revealed that H2S administration limited perturbations to lung structure in experimental animal models of bronchopulmonary dysplasia (BPD), partially restoring alveolarization, limiting pulmonary hypertension, limiting inflammation, and promoting epithelial repair. No studies have addressed roles for endogenous H2S in lung development. H2S is endogenously generated by cystathionine ß-synthase (Cbs) and cystathionine γ-lyase (Cth). We demonstrate here that the expression of Cbs and Cth in mouse lungs is dynamically regulated during lung alveolarization and that alveolarization is blunted in Cbs(-/-) and Cth(-/-) mouse pups, where a 50% reduction in the total number of alveoli was observed, without any impact on septal thickness. Laser-capture microdissection and immunofluorescence staining indicated that Cbs and Cth were expressed in the airway epithelium and lung vessels. Loss of Cbs and Cth led to a 100-500% increase in the muscularization of small- and medium-sized lung vessels, which was accompanied by increased vessel wall thickness, and an apparent decrease in lung vascular supply. Ablation of Cbs expression using small interfering RNA or pharmacological inhibition of Cth using propargylglycine in lung endothelial cells limited angiogenic capacity, causing a 30-40% decrease in tube length and a 50% decrease in number of tubes formed. In contrast, exogenous administration of H2S with GYY4137 promoted endothelial tube formation. These data confirm a key role for the H2S-generating enzymes Cbs and Cth in pulmonary vascular development and homeostasis and in lung alveolarization.


Asunto(s)
Cistationina betasintasa/biosíntesis , Cistationina gamma-Liasa/biosíntesis , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Sulfuro de Hidrógeno/metabolismo , Alveolos Pulmonares , Mucosa Respiratoria , Animales , Cistationina betasintasa/genética , Cistationina gamma-Liasa/genética , Ratones , Ratones Noqueados , Alveolos Pulmonares/irrigación sanguínea , Alveolos Pulmonares/embriología , Alveolos Pulmonares/enzimología , Mucosa Respiratoria/irrigación sanguínea , Mucosa Respiratoria/embriología , Mucosa Respiratoria/enzimología
12.
Aging Dis ; 15(2): 911-926, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37548932

RESUMEN

The mitochondrial adaptor protein p66Shc has been suggested to control life span in mice via the release of hydrogen peroxide. However, the role of p66Shc in lung aging remains unsolved. Thus, we investigated the effects of p66Shc-/- on the aging of the lung and pulmonary circulation. In vivo lung and cardiac characteristics were investigated in p66Shc-/- and wild type (WT) mice at 3, 12, and 24 months of age by lung function measurements, micro-computed tomography (µCT), and echocardiography. Alveolar number and muscularization of small pulmonary arteries were measured by stereology and vascular morphometry, respectively. Protein and mRNA levels of senescent markers were measured by western blot and PCR, respectively. Lung function declined similarly in WT and p66Shc-/- mice during aging. However, µCT analyses and stereology showed slightly enhanced signs of aging-related parameters in p66Shc-/- mice, such as a decline of alveolar density. Accordingly, p66Shc-/- mice showed higher protein expression of the senescence marker p21 in lung homogenate compared to WT mice of the corresponding age. Pulmonary vascular remodeling was increased during aging, but aged p66Shc-/- mice showed similar muscularization of pulmonary vessels and hemodynamics like WT mice. In the heart, p66Shc-/- prevented the deterioration of right ventricular (RV) function but promoted the decline of left ventricular (LV) function during aging. p66Shc-/- affects the aging process of the lung and the heart differently. While p66Shc-/- slightly accelerates lung aging and deteriorates LV function in aged mice, it seems to exert protective effects on RV function during aging.


Asunto(s)
Envejecimiento , Pulmón , Animales , Ratones , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética , Proteínas Adaptadoras de la Señalización Shc/genética , Microtomografía por Rayos X , Envejecimiento/genética , Pulmón/diagnóstico por imagen , Oxidación-Reducción
14.
Ann Anat ; 232: 151579, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32688019

RESUMEN

BACKGROUND: Lung alveolarization, the development of the alveoli, is disturbed in preterm infants with bronchopulmonary dysplasia (BPD), the most common complication of preterm birth. Animal models based on oxygen toxicity to the developing mouse lung are used to understand the mechanisms of stunted alveolarization in BPD, and to develop new medical management strategies for affected infants. The toxicity of genetic and pharmacological interventions, together with maternal cannibalism, reduce mouse litter sizes in experimental studies. The impact of litter size on normal and stunted lung alveolarization is unknown, but may influence data interpretation. The aim of the study was to assess the impact of litter size on normal and oxygen-stunted lung alveolarization in mice. METHODS: BPD was experimentally modelled in newborn C57BL/6J mice by exposure to 85% O2 in the inspired air for the first 14 days of post-natal life. Perturbations to mouse lung architecture were assessed by design-based stereology, in which the alveolar density, total number of alveoli, gas-exchange surface area, and the septal thickness were estimated. RESULTS: Litter sizes of a single mouse were not viable to post-natal day 14. Normal lung alveolarization was comparable in mouse pups in litters of 2, 4, 6, and 8 pups per litter. Hyperoxia was equally effective at stunting lung alveolarization in mouse pups in litters of 2, 4, 6, and 8 pups per litter. CONCLUSIONS: Studies on normal lung alveolarization as well as alveolarization stunted by oxygen toxicity can be undertaken in mouse litters as small as two pups, and as large as eight pups. There is no evidence to suggest that data cannot be compared within and between litters of two to eight mouse pups.


Asunto(s)
Animales Recién Nacidos/crecimiento & desarrollo , Displasia Broncopulmonar/patología , Tamaño de la Camada/fisiología , Alveolos Pulmonares/crecimiento & desarrollo , Análisis de Varianza , Animales , Displasia Broncopulmonar/etiología , Modelos Animales de Enfermedad , Femenino , Genotipo , Masculino , Ratones , Ratones Endogámicos C57BL
15.
Anat Rec (Hoboken) ; 302(2): 346-363, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30412359

RESUMEN

There is currently much interest in understanding the mechanisms of normal and aberrant lung alveolarization, particularly in the context of bronchopulmonary dysplasia, a common complication of preterm birth where alveolarization is impeded. To this end, the parenteral administration of pharmacological agents that modulate biochemical pathways, or facilitate modulation of gene expression in transgenic animals, has facilitated the discovery and validation of mechanisms that direct lung development. Such studies include control interventions, where the solvent vehicle, perhaps containing an inactive form of the agent applied, is administered; thereby providing a well-controlled point of reference for the analysis of the partner experiment. In the present study, the impact of several widely used control interventions in developing C57Bl/6J mouse pups was examined for effects on lung structure and the lung transcriptome. Parenteral administration of scrambled microRNA inhibitors (called antagomiRs) that are used to control in vivo microRNA neutralization studies, impacted lung volume, septal thickness, and the transcriptome of developing mouse lungs; with some effects dependent upon nucleotide sequence. Repeated intraperitoneal isotonic saline injections altered lung volume, with limited impact on the transcriptome. Parenteral administration of the tamoxifen solvent Miglyol accelerated mouse pup growth, and changed the abundance of 73 mRNA transcripts in the lung. Tamoxifen applied in Miglyol-in the absence of Cre recombinase-decreased pup growth, lung volume, and lung alveolarization and changed the abundance of 298 mRNA transcripts in the lung. These data demonstrate that widely used control interventions can directly impact lung alveolarization and the lung transcriptome in studies on lung development. Anat Rec, 302:346-363, 2019. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , MicroARNs/antagonistas & inhibidores , Alveolos Pulmonares/crecimiento & desarrollo , Alveolos Pulmonares/metabolismo , Transcriptoma , Animales , Animales Recién Nacidos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Organogénesis
16.
Pediatr Pulmonol ; 54(7): 1060-1077, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30848059

RESUMEN

BACKGROUND: The laboratory mouse is widely used in preclinical models of bronchopulmonary dysplasia, where lung alveolarization is stunted by exposure of pups to hyperoxia. Whether the diverse genetic backgrounds of different inbred mouse strains impacts lung development in newborn mice exposed to hyperoxia has not been systematically assessed. METHODS: Hyperoxia (85% O2 , 14 days)-induced perturbations to lung alveolarization were assessed by design-based stereology in C57BL/6J, BALB/cJ, FVB/NJ, C3H/HeJ, and DBA/2J inbred mouse strains. The expression of components of the lung antioxidant machinery was assessed by real-time reverse transcriptase polymerase chain reaction and immunoblot. RESULTS: Hyperoxia-reduced lung alveolar density in all five mouse strains to different degrees (C57BL/6J, 64.8%; FVB/NJ, 47.4%; BALB/cJ, 46.4%; DBA/2J, 45.9%; and C3H/HeJ, 35.9%). Hyperoxia caused a 94.5% increase in mean linear intercept in the C57BL/6J strain, whilst the C3H/HeJ strain was the least affected (31.6% increase). In contrast, hyperoxia caused a 65.4% increase in septal thickness in the FVB/NJ strain, where the C57BL/6J strain was the least affected (30.3% increase). The expression of components of the lung antioxidant machinery in response to hyperoxia was strain dependent, with the C57BL/6J strain exhibiting the most dramatic engagement. Baseline expression levels of components of the lung antioxidant systems were different in the five mouse strains studied, under both normoxic and hyperoxic conditions. CONCLUSION: The genetic background of laboratory mouse strains dramatically influenced the response of the developing lung to hyperoxic insult. This might be explained, at least in part, by differences in how antioxidant systems are engaged by different mouse strains after hyperoxia exposure.


Asunto(s)
Displasia Broncopulmonar/etiología , Hiperoxia/complicaciones , Pulmón/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Femenino , Antecedentes Genéticos , Hiperoxia/genética , Pulmón/metabolismo , Masculino , Ratones Endogámicos , Oxígeno/metabolismo
17.
EMBO Mol Med ; 11(3)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30770339

RESUMEN

Bronchopulmonary dysplasia (BPD) is a common complication of preterm birth characterized by arrested lung alveolarization, which generates lungs that are incompetent for effective gas exchange. We report here deregulated expression of miR-34a in a hyperoxia-based mouse model of BPD, where miR-34a expression was markedly increased in platelet-derived growth factor receptor (PDGFR)α-expressing myofibroblasts, a cell type critical for proper lung alveolarization. Global deletion of miR-34a; and inducible, conditional deletion of miR-34a in PDGFRα+ cells afforded partial protection to the developing lung against hyperoxia-induced perturbations to lung architecture. Pdgfra mRNA was identified as the relevant miR-34a target, and using a target site blocker in vivo, the miR-34a/Pdgfra interaction was validated as a causal actor in arrested lung development. An antimiR directed against miR-34a partially restored PDGFRα+ myofibroblast abundance and improved lung alveolarization in newborn mice in an experimental BPD model. We present here the first identification of a pathology-relevant microRNA/mRNA target interaction in aberrant lung alveolarization and highlight the translational potential of targeting the miR-34a/Pdgfra interaction to manage arrested lung development associated with preterm birth.


Asunto(s)
Displasia Broncopulmonar/metabolismo , MicroARNs/metabolismo , Alveolos Pulmonares/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Animales , Modelos Animales de Enfermedad , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Hiperoxia/metabolismo , Ratones , Ratones Endogámicos C57BL
18.
FEBS J ; 285(16): 3056-3076, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29935061

RESUMEN

The generation, maturation and remodelling of the extracellular matrix (ECM) are essential for the formation of alveoli during lung development. Alveoli formation is disturbed in preterm infants that develop bronchopulmonary dysplasia (BPD), where collagen fibres are malformed, and perturbations to lung ECM structures may underlie BPD pathogenesis. Malformed ECM structures might result from abnormal protein cross-linking, in part attributable to the increased expression and activity of transglutaminase 2 (TGM2) that have been noted in affected patient lungs, as well as in hyperoxia-based BPD animal models. The objective of the present study was to assess whether TGM2 plays a causal role in normal and aberrant lung alveolarization. Targeted deletion of Tgm2 in C57BL/6J mice increased septal thickness and reduced gas-exchange surface area in otherwise normally developing lungs. During aberrant lung alveolarization that occurred under hyperoxic conditions, collagen structures in Tgm2-/- mice were partially protected from the impact of hyperoxia, where normal dihydroxylysinonorleucine and hydroxylysylpiridinoline collagen cross-link abundance was restored; however, the lung alveolar architecture remained abnormal. Inhibition of transglutaminases (including TGM2) with cysteamine appreciably reduced transglutaminase activity in vivo, as assessed by Nε -(γ-l-glutamyl)-l-lysine abundance and TGM catalytic activity, and restored normal dihydroxylysinonorleucine and hydroxylysylpiridinoline collagen cross-link abundance under pathological conditions. Furthermore, a moderate improvement in alveoli size and gas-exchange surface density was noted in cysteamine-treated mouse lungs in which BPD was modelled. These data indicate that TGM2 plays a role in normal lung alveolarization, and contributes to the formation of aberrant ECM structures during disordered lung alveolarization.


Asunto(s)
Displasia Broncopulmonar/enzimología , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Alveolos Pulmonares/enzimología , Transglutaminasas/genética , Transglutaminasas/metabolismo , Animales , Displasia Broncopulmonar/genética , Colágeno/metabolismo , Colágeno/ultraestructura , Cisteamina/farmacología , Dipéptidos/inmunología , Dipéptidos/metabolismo , Modelos Animales de Enfermedad , Matriz Extracelular/enzimología , Matriz Extracelular/patología , Femenino , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Hiperoxia/genética , Pulmón/efectos de los fármacos , Pulmón/enzimología , Pulmón/crecimiento & desarrollo , Ratones Endogámicos C57BL , Ratones Noqueados , Terapia Molecular Dirigida , Proteína Glutamina Gamma Glutamiltransferasa 2 , Alveolos Pulmonares/patología , Alveolos Pulmonares/ultraestructura
19.
Dis Model Mech ; 10(2): 185-196, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28067624

RESUMEN

Progress in developing new therapies for bronchopulmonary dysplasia (BPD) is sometimes complicated by the lack of a standardised animal model. Our objective was to develop a robust hyperoxia-based mouse model of BPD that recapitulated the pathological perturbations to lung structure noted in infants with BPD. Newborn mouse pups were exposed to a varying fraction of oxygen in the inspired air (FiO2) and a varying window of hyperoxia exposure, after which lung structure was assessed by design-based stereology with systemic uniform random sampling. The efficacy of a candidate therapeutic intervention using parenteral nutrition was evaluated to demonstrate the utility of the standardised BPD model for drug discovery. An FiO2 of 0.85 for the first 14 days of life decreased total alveoli number and concomitantly increased alveolar septal wall thickness, which are two key histopathological characteristics of BPD. A reduction in FiO2 to 0.60 or 0.40 also caused a decrease in the total alveoli number, but the septal wall thickness was not impacted. Neither a decreasing oxygen gradient (from FiO2 0.85 to 0.21 over the first 14 days of life) nor an oscillation in FiO2 (between 0.85 and 0.40 on a 24 h:24 h cycle) had an appreciable impact on lung development. The risk of missing beneficial effects of therapeutic interventions at FiO2 0.85, using parenteral nutrition as an intervention in the model, was also noted, highlighting the utility of lower FiO2 in selected studies, and underscoring the need to tailor the model employed to the experimental intervention. Thus, a state-of-the-art BPD animal model that recapitulates the two histopathological hallmark perturbations to lung architecture associated with BPD is described. The model presented here, where injurious stimuli have been systematically evaluated, provides a most promising approach for the development of new strategies to drive postnatal lung maturation in affected infants.


Asunto(s)
Displasia Broncopulmonar/patología , Oxígeno/administración & dosificación , Animales , Animales Recién Nacidos , Displasia Broncopulmonar/complicaciones , Modelos Animales de Enfermedad , Hiperoxia/complicaciones , Hiperoxia/patología , Pulmón/patología , Ratones Endogámicos C57BL , Estándares de Referencia
20.
Mol Cell Pediatr ; 3(1): 19, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27216745

RESUMEN

MicroRNA are emerging as powerful regulators of cell differentiation and tissue and organ development. Several microRNA have been described to play a role in branching morphogenesis, a key step in early lung development. However, considerably less attention has been paid to microRNA as regulators of the process of secondary septation, which drives lung alveolarization during late lung development. Secondary septation is severely perturbed in bronchopulmonary dysplasia (BPD), a common complication of preterm birth characterized by blunted alveolarization. A number of studies to date have reported microRNA microarray screens in animal models of BPD; however, only two studies have attempted to demonstrate causality. Although the expression of miR-150 was altered in experimental BPD, a miR-150(-/-) knockout mouse did not exhibit appreciable protection in a BPD animal model. Similarly, while the expression of miR-489 in the lung was reduced in clinical and experimental BPD, antagomiR and over-expression approaches could not validate a role for miR-489 in the impaired alveolarization associated with experimental BPD. This mini-review aims to highlight microRNA that have been revealed by multiple microarray studies to be potential causal players in normal and pathological alveolarization. Additionally, the challenges faced in attempting to demonstrate a causal role for microRNA in lung alveolarization are discussed. These include the tremendous variability in the animal models employed, and the limitations and advantages offered by the available tools, including antagomiRs and approaches for the validation of a specific microRNA-mRNA interaction during lung alveolarization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA