Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(6): 1508-1519.e18, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29754816

RESUMEN

As predicted by the notion that sister chromatid cohesion is mediated by entrapment of sister DNAs inside cohesin rings, there is perfect correlation between co-entrapment of circular minichromosomes and sister chromatid cohesion. In most cells where cohesin loads without conferring cohesion, it does so by entrapment of individual DNAs. However, cohesin with a hinge domain whose positively charged lumen is neutralized loads and moves along chromatin despite failing to entrap DNAs. Thus, cohesin engages chromatin in non-topological, as well as topological, manners. Since hinge mutations, but not Smc-kleisin fusions, abolish entrapment, DNAs may enter cohesin rings through hinge opening. Mutation of three highly conserved lysine residues inside the Smc1 moiety of Smc1/3 hinges abolishes all loading without affecting cohesin's recruitment to CEN loading sites or its ability to hydrolyze ATP. We suggest that loading and translocation are mediated by conformational changes in cohesin's hinge driven by cycles of ATP hydrolysis.


Asunto(s)
Proteínas de Ciclo Celular/química , Cromátides/química , Proteínas Cromosómicas no Histona/química , ADN/química , Adenosina Trifosfato/química , Animales , Sitios de Unión , Cromatina/química , Humanos , Hidrólisis , Lisina/química , Ratones , Mutación , Proteínas Nucleares/genética , Conformación Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Cohesinas
2.
Nat Immunol ; 19(9): 932-941, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30127433

RESUMEN

Cohesin is important for 3D genome organization. Nevertheless, even the complete removal of cohesin has surprisingly little impact on steady-state gene transcription and enhancer activity. Here we show that cohesin is required for the core transcriptional response of primary macrophages to microbial signals, and for inducible enhancer activity that underpins inflammatory gene expression. Consistent with a role for inflammatory signals in promoting myeloid differentiation of hematopoietic stem and progenitor cells (HPSCs), cohesin mutations in HSPCs led to reduced inflammatory gene expression and increased resistance to differentiation-inducing inflammatory stimuli. These findings uncover an unexpected dependence of inducible gene expression on cohesin, link cohesin with myeloid differentiation, and may help explain the prevalence of cohesin mutations in human acute myeloid leukemia.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/genética , Autorrenovación de las Células/genética , Proteínas Cromosómicas no Histona/metabolismo , Células Madre Hematopoyéticas/fisiología , Leucemia Mieloide Aguda/genética , Macrófagos/fisiología , Proteínas Nucleares/genética , Fosfoproteínas/genética , Animales , Proteínas de Ciclo Celular/genética , Células Cultivadas , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inflamación/genética , Lipopolisacáridos/inmunología , Ratones , Ratones Noqueados , Mutación/genética , Cohesinas
3.
Nat Rev Genet ; 23(7): 447-452, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35595848

RESUMEN

July 2022 will see the bicentenary of the birth of Gregor Mendel, often hailed as the 'father of modern genetics'. To mark the occasion, I retrace Mendel's origins, revisit his famous study 'Experiments in plant hybridization', and reflect on the revolutionary implications of his work and scientific legacy that continues to shape modern biomedicine to this day.

4.
Mol Cell ; 79(2): 234-250.e9, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32579944

RESUMEN

Somatic cell nuclear transfer (SCNT) can reprogram a somatic nucleus to a totipotent state. However, the re-organization of 3D chromatin structure in this process remains poorly understood. Using low-input Hi-C, we revealed that, during SCNT, the transferred nucleus first enters a mitotic-like state (premature chromatin condensation). Unlike fertilized embryos, SCNT embryos show stronger topologically associating domains (TADs) at the 1-cell stage. TADs become weaker at the 2-cell stage, followed by gradual consolidation. Compartments A/B are markedly weak in 1-cell SCNT embryos and become increasingly strengthened afterward. By the 8-cell stage, somatic chromatin architecture is largely reset to embryonic patterns. Unexpectedly, we found cohesin represses minor zygotic genome activation (ZGA) genes (2-cell-specific genes) in pluripotent and differentiated cells, and pre-depleting cohesin in donor cells facilitates minor ZGA and SCNT. These data reveal multi-step reprogramming of 3D chromatin architecture during SCNT and support dual roles of cohesin in TAD formation and minor ZGA repression.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Cromatina/fisiología , Proteínas Cromosómicas no Histona/fisiología , Técnicas de Transferencia Nuclear , Cigoto/fisiología , Animales , Línea Celular , Núcleo Celular , Ensamble y Desensamble de Cromatina , Biología Computacional/métodos , Conjuntos de Datos como Asunto , Desarrollo Embrionario , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Cohesinas
5.
Annu Rev Genet ; 53: 445-482, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31577909

RESUMEN

Structural maintenance of chromosomes (SMC) complexes are key organizers of chromosome architecture in all kingdoms of life. Despite seemingly divergent functions, such as chromosome segregation, chromosome maintenance, sister chromatid cohesion, and mitotic chromosome compaction, it appears that these complexes function via highly conserved mechanisms and that they represent a novel class of DNA translocases.


Asunto(s)
Cromátides , Cromosomas/metabolismo , ADN/química , ADN/metabolismo , Complejos Multiproteicos/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Cromátides/química , Cromátides/genética , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Cromosomas/química , Cromosomas/genética , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos , Mitosis , Complejos Multiproteicos/química , Regiones Promotoras Genéticas , Recombinación V(D)J , Cohesinas
6.
Cell ; 150(5): 961-74, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22901742

RESUMEN

Sister chromatid cohesion is mediated by entrapment of sister DNAs by a tripartite ring composed of cohesin's Smc1, Smc3, and α-kleisin subunits. Cohesion requires acetylation of Smc3 by Eco1, whose role is to counteract an inhibitory (antiestablishment) activity associated with cohesin's Wapl subunit. We show that mutations abrogating antiestablishment activity also reduce turnover of cohesin on pericentric chromatin. Our results reveal a "releasing" activity inherent to cohesin complexes transiently associated with Wapl that catalyzes their dissociation from chromosomes. Fusion of Smc3's nucleotide binding domain to α-kleisin's N-terminal domain also reduces cohesin turnover within pericentric chromatin and permits establishment of Wapl-resistant cohesion in the absence of Eco1. We suggest that releasing activity opens the Smc3/α-kleisin interface, creating a DNA exit gate distinct from its proposed entry gate at the Smc1/3 interface. According to this notion, the function of Smc3 acetylation is to block its dissociation from α-kleisin. The functional implications of regulated ring opening are discussed.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilación , Acetiltransferasas/metabolismo , Cromosomas Fúngicos/metabolismo , Replicación del ADN , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/citología , Cohesinas
7.
Mol Cell ; 75(2): 224-237.e5, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31201089

RESUMEN

Cohesin entraps sister DNAs within tripartite rings created by pairwise interactions between Smc1, Smc3, and Scc1. Because Smc1/3 ATPase heads can also interact with each other, cohesin rings have the potential to form a variety of sub-compartments. Using in vivo cysteine cross-linking, we show that when Smc1 and Smc3 ATPases are engaged in the presence of ATP (E heads), cohesin rings generate a "SMC (S) compartment" between hinge and E heads and a "kleisin (K) compartment" between E heads and their associated kleisin subunit. Upon ATP hydrolysis, cohesin's heads associate in a different mode, in which their signature motifs and their coiled coils are closely juxtaposed (J heads), creating alternative S and K compartments. We show that K compartments of either E or J type can entrap single DNAs, that acetylation of Smc3 during S phase is associated with J heads, and that sister DNAs are entrapped in J-K compartments.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , ADN/genética , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Adenosina Trifosfato/química , Adenosina Trifosfato/genética , Cromátides/genética , ADN/química , Dimerización , Modelos Moleculares , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Intercambio de Cromátides Hermanas/genética , Cohesinas
9.
Mol Cell ; 70(6): 1134-1148.e7, 2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29932904

RESUMEN

Cohesin organizes DNA into chromatids, regulates enhancer-promoter interactions, and confers sister chromatid cohesion. Its association with chromosomes is regulated by hook-shaped HEAT repeat proteins that bind Scc1, namely Scc3, Pds5, and Scc2. Unlike Pds5, Scc2 is not a stable cohesin constituent but, as shown here, transiently replaces Pds5. Scc1 mutations that compromise its interaction with Scc2 adversely affect cohesin's ATPase activity and loading. Moreover, Scc2 mutations that alter how the ATPase responds to DNA abolish loading despite cohesin's initial association with loading sites. Lastly, Scc2 mutations that permit loading in the absence of Scc4 increase Scc2's association with chromosomal cohesin and reduce that of Pds5. We suggest that cohesin switches between two states: one with Pds5 bound that is unable to hydrolyze ATP efficiently but is capable of release from chromosomes and another in which Scc2 replaces Pds5 and stimulates ATP hydrolysis necessary for loading and translocation from loading sites.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , ADN de Hongos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Cohesinas
10.
Mol Cell ; 61(4): 563-574, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26895425

RESUMEN

Sister chromatid cohesion conferred by entrapment of sister DNAs within a tripartite ring formed between cohesin's Scc1, Smc1, and Smc3 subunits is created during S and destroyed at anaphase through Scc1 cleavage by separase. Cohesin's association with chromosomes is controlled by opposing activities: loading by Scc2/4 complex and release by a separase-independent releasing activity as well as by cleavage. Coentrapment of sister DNAs at replication is accompanied by acetylation of Smc3 by Eco1, which blocks releasing activity and ensures that sisters remain connected. Because fusion of Smc3 to Scc1 prevents release and bypasses the requirement for Eco1, we suggested that release is mediated by disengagement of the Smc3/Scc1 interface. We show that mutations capable of bypassing Eco1 in Smc1, Smc3, Scc1, Wapl, Pds5, and Scc3 subunits reduce dissociation of N-terminal cleavage fragments of Scc1 (NScc1) from Smc3. This process involves interaction between Smc ATPase heads and is inhibited by Smc3 acetylation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetilación , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , ADN de Hongos/metabolismo , Modelos Moleculares , Mutación , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Cohesinas
11.
Mol Cell ; 61(4): 575-588, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26895426

RESUMEN

Cohesin stably holds together the sister chromatids from S phase until mitosis. To do so, cohesin must be protected against its cellular antagonist Wapl. Eco1 acetylates cohesin's Smc3 subunit, which locks together the sister DNAs. We used yeast genetics to dissect how Wapl drives cohesin from chromatin and identified mutants of cohesin that are impaired in ATPase activity but remarkably confer robust cohesion that bypasses the need for the cohesin protectors Eco1 in yeast and Sororin in human cells. We uncover a functional asymmetry within the heart of cohesin's highly conserved ABC-like ATPase machinery and find that both ATPase sites contribute to DNA loading, whereas DNA release is controlled specifically by one site. We propose that Smc3 acetylation locks cohesin rings around the sister chromatids by counteracting an activity associated with one of cohesin's two ATPase sites.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Acetilación , Dominio Catalítico , Ciclo Celular , Cromatina/genética , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cohesinas
13.
Mol Cell ; 44(1): 97-107, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21981921

RESUMEN

The contribution of DNA catenation to sister chromatid cohesion is unclear partly because it has never been observed directly within mitotic chromosomes. Differential sedimentation-velocity and gel electrophoresis reveal that sisters of 26 kb circular minichromosomes are held together by catenation as well as by cohesin. The finding that chemical crosslinking of cohesin's three subunit interfaces entraps sister DNAs of circular but not linear minichromosomes implies that cohesin functions using a topological principle. Importantly, cohesin holds both catenated and uncatenated DNAs together in this manner. In the vicinity of centromeres, catenanes are resolved by spindle forces, but linkages mediated directly by cohesin resist these forces even after complete decatenation. Crucially, persistence of catenation after S phase depends on cohesin. We conclude that by retarding Topo II-driven decatenation, cohesin mediates sister chromatid cohesion by an indirect mechanism as well as one involving entrapment of sister DNAs inside its tripartite ring.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas Cromosómicas no Histona/fisiología , ADN Concatenado , Saccharomyces cerevisiae/metabolismo , Proteínas Cdc20 , Proteínas de Ciclo Celular/metabolismo , Separación Celular , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , Reactivos de Enlaces Cruzados , ADN de Hongos/genética , Mitosis , Conformación de Ácido Nucleico , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo , Huso Acromático , Cohesinas
14.
Mol Cell ; 39(5): 689-99, 2010 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-20832721

RESUMEN

Sister chromatid cohesion is thought to involve entrapment of sister DNAs by a tripartite ring composed of the cohesin subunits Smc1, Smc3, and Scc1. Establishment of cohesion during S phase depends on acetylation of Smc3's nucleotide-binding domain (NBD) by the Eco1 acetyl transferase. It is destroyed at the onset of anaphase due to Scc1 cleavage by separase. In yeast, Smc3 acetylation is reversed at anaphase by the Hos1 deacetylase as a consequence of Scc1 cleavage. Smc3 molecules that remain acetylated after mitosis due to Hos1 inactivation cannot generate cohesion during the subsequent S phase, implying that cohesion establishment depends on de novo acetylation during DNA replication. By inducing Smc3 deacetylation in postreplicative cells due to Hos1 overexpression, we provide evidence that Smc3 acetylation contributes to the maintenance of sister chromatid cohesion. A cycle of Smc3 NBD acetylation is therefore an essential aspect of the chromosome cycle in eukaryotic cells.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/metabolismo , Replicación del ADN/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas Cromosómicas no Histona/genética , Cromosomas Fúngicos/genética , Endopeptidasas/genética , Endopeptidasas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estructura Terciaria de Proteína , Fase S/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Separasa
15.
Genes Dev ; 24(22): 2505-16, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20971813

RESUMEN

During female meiosis, bivalent chromosomes are thought to be held together from birth until ovulation by sister chromatid cohesion mediated by cohesin complexes whose ring structure depends on kleisin subunits, either Rec8 or Scc1. Because cohesion is established at DNA replication in the embryo, its maintenance for such a long time may require cohesin turnover. To address whether Rec8- or Scc1-containing cohesin holds bivalents together and whether it turns over, we created mice whose kleisin subunits can be cleaved by TEV protease. We show by microinjection experiments and confocal live-cell imaging that Rec8 cleavage triggers chiasmata resolution during meiosis I and sister centromere disjunction during meiosis II, while Scc1 cleavage triggers sister chromatid disjunction in the first embryonic mitosis, demonstrating a dramatic transition from Rec8- to Scc1-containing cohesin at fertilization. Crucially, activation of an ectopic Rec8 transgene during the growing phase of Rec8(TEV)(/TEV) oocytes does not prevent TEV-mediated bivalent destruction, implying little or no cohesin turnover for ≥2 wk during oocyte growth. We suggest that the inability of oocytes to regenerate cohesion may contribute to age-related meiosis I errors.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , Proteínas Nucleares/metabolismo , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Fosfoproteínas/metabolismo , Animales , Células Cultivadas , Centrómero/genética , Cromosomas/genética , Endopeptidasas/metabolismo , Femenino , Ratones , Proteínas Nucleares/genética , Fosfoproteínas/genética , Cohesinas
16.
EMBO J ; 32(5): 656-65, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23340528

RESUMEN

Cohesin's Smc1, Smc3, and kleisin subunits create a tripartite ring within which sister DNAs are entrapped. Evidence suggests that DNA enters through a gate created by transient dissociation of the Smc1/3 interface. Release at the onset of anaphase is triggered by proteolytic cleavage of kleisin. Less well understood is the mechanism of release at other stages of the cell cycle, in particular during prophase when most cohesin dissociates from chromosome arms in a process dependent on the regulatory subunit Wapl. We show here that Wapl-dependent release from salivary gland polytene chromosomes during interphase and from neuroblast chromosome arms during prophase is blocked by translational fusion of Smc3's C-terminus to kleisin's N-terminus. Our findings imply that proteolysis-independent release of cohesin from chromatin is mediated by Wapl-dependent escape of DNAs through a gate created by transient dissociation of the Smc3/kleisin interface. Thus, cohesin's DNA entry and exit gates are distinct.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Interfase/fisiología , Mitosis/fisiología , Cromosomas Politénicos/genética , Animales , Animales Modificados Genéticamente , Western Blotting , Proteínas de Ciclo Celular/genética , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Femenino , Técnicas para Inmunoenzimas , Masculino , Neuronas/citología , Neuronas/metabolismo , Cromosomas Politénicos/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Glándulas Salivales/citología , Glándulas Salivales/metabolismo
17.
Annu Rev Genet ; 43: 525-58, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19886810

RESUMEN

The cohesin complex is a major constituent of interphase and mitotic chromosomes. Apart from its role in mediating sister chromatid cohesion, it is also important for DNA double-strand-break repair and transcriptional control. The functions of cohesin are regulated by phosphorylation, acetylation, ATP hydrolysis, and site-specific proteolysis. Recent evidence suggests that cohesin acts as a novel topological device that traps chromosomal DNA within a large tripartite ring formed by its core subunits.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Animales , Cromosomas/metabolismo , ADN/metabolismo , Humanos , Modelos Biológicos , Cohesinas
18.
PLoS Biol ; 12(10): e1001962, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25290697

RESUMEN

Pericentric heterochromatin, while often considered as "junk" DNA, plays important functions in chromosome biology. It contributes to sister chromatid cohesion, a process mediated by the cohesin complex that ensures proper genome segregation during nuclear division. Long stretches of heterochromatin are almost exclusively placed at centromere-proximal regions but it remains unclear if there is functional (or mechanistic) importance in linking the sites of sister chromatid cohesion to the chromosomal regions that mediate spindle attachment (the centromere). Using engineered chromosomes in Drosophila melanogaster, we demonstrate that cohesin enrichment is dictated by the presence of heterochromatin rather than centromere proximity. This preferential accumulation is caused by an enrichment of the cohesin-loading factor (Nipped-B/NIPBL/Scc2) at dense heterochromatic regions. As a result, chromosome translocations containing ectopic pericentric heterochromatin embedded in euchromatin display additional cohesin-dependent constrictions. These ectopic cohesion sites, placed away from the centromere, disjoin abnormally during anaphase and chromosomes exhibit a significant increase in length during anaphase (termed chromatin stretching). These results provide evidence that long stretches of heterochromatin distant from the centromere, as often found in many cancers, are sufficient to induce abnormal accumulation of cohesin at these sites and thereby compromise the fidelity of chromosome segregation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas de Insectos/fisiología , Heterocromatina/metabolismo , Anafase , Animales , Animales Modificados Genéticamente , Centrómero , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Masculino , Cohesinas
19.
Nature ; 476(7361): 467-71, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21832993

RESUMEN

Cohesin enables post-replicative DNA repair and chromosome segregation by holding sister chromatids together from the time of DNA replication in S phase until mitosis. There is growing evidence that cohesin also forms long-range chromosomal cis-interactions and may regulate gene expression in association with CTCF, mediator or tissue-specific transcription factors. Human cohesinopathies such as Cornelia de Lange syndrome are thought to result from impaired non-canonical cohesin functions, but a clear distinction between the cell-division-related and cell-division-independent functions of cohesion--as exemplified in Drosophila--has not been demonstrated in vertebrate systems. To address this, here we deleted the cohesin locus Rad21 in mouse thymocytes at a time in development when these cells stop cycling and rearrange their T-cell receptor (TCR) α locus (Tcra). Rad21-deficient thymocytes had a normal lifespan and retained the ability to differentiate, albeit with reduced efficiency. Loss of Rad21 led to defective chromatin architecture at the Tcra locus, where cohesion-binding sites flank the TEA promoter and the Eα enhancer, and demarcate Tcra from interspersed Tcrd elements and neighbouring housekeeping genes. Cohesin was required for long-range promoter-enhancer interactions, Tcra transcription, H3K4me3 histone modifications that recruit the recombination machinery and Tcra rearrangement. Provision of pre-rearranged TCR transgenes largely rescued thymocyte differentiation, demonstrating that among thousands of potential target genes across the genome, defective Tcra rearrangement was limiting for the differentiation of cohesin-deficient thymocytes. These findings firmly establish a cell-division-independent role for cohesin in Tcra locus rearrangement and provide a comprehensive account of the mechanisms by which cohesin enables cellular differentiation in a well-characterized mammalian system.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Proteínas Cromosómicas no Histona/metabolismo , Reordenamiento Génico de Linfocito T , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Timo/citología , Animales , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/deficiencia , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN , Regulación de la Expresión Génica , Reordenamiento Génico de Linfocito T/genética , Genes RAG-1/genética , Ratones , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Recombinasas/metabolismo , Timo/metabolismo , Transcripción Genética , Cohesinas
20.
Mol Cell ; 35(4): 426-41, 2009 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-19716788

RESUMEN

Accurate chromosome segregation during mitosis and meiosis depends on shugoshin proteins that prevent precocious dissociation of cohesin from centromeres. Shugoshins associate with PP2A, which is thought to dephosphorylate cohesin and thereby prevent cleavage by separase during meiosis I. A crystal structure of a complex between a fragment of human Sgo1 and an AB'C PP2A holoenzyme reveals that Sgo1 forms a homodimeric parallel coiled coil that docks simultaneously onto PP2A's C and B' subunits. Sgo1 homodimerization is a prerequisite for PP2A binding. While hSgo1 interacts only with the AB'C holoenzymes, its relative, Sgo2, interacts with all PP2A forms and may thus lead to dephosphorylation of distinct substrates. Mutant shugoshin proteins defective in the binding of PP2A cannot protect centromeric cohesin from separase during meiosis I or support the spindle assembly checkpoint in yeast. Finally, we provide evidence that PP2A's recruitment to chromosomes may be sufficient to protect cohesin from separase in mammalian oocytes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrómero/enzimología , Meiosis/fisiología , Proteína Fosfatasa 2/metabolismo , Huso Acromático/enzimología , Animales , Sitios de Unión , Dominio Catalítico , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Células Cultivadas , Proteínas Cromosómicas no Histona/metabolismo , Cristalografía por Rayos X , Endopeptidasas/metabolismo , Femenino , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Mutación , Proteínas Nucleares/metabolismo , Oocitos/enzimología , Conformación Proteica , Multimerización de Proteína , Proteína Fosfatasa 2/química , Estructura Terciaria de Proteína , Subunidades de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo , Separasa , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA