Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 59(14): 5632-5636, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-31899577

RESUMEN

Functional oxides whose physicochemical properties may be reversibly changed at standard conditions are potential candidates for the use in next-generation nanoelectronic devices. To date, vanadium dioxide (VO2 ) is the only known simple transition-metal oxide that demonstrates a near-room-temperature metal-insulator transition that may be used in such appliances. In this work, we synthesized and investigated the crystals of a novel mixed-valent iron oxide with an unconventional Fe5 O6 stoichiometry. Near 275 K, Fe5 O6 undergoes a Verwey-type charge-ordering transition that is concurrent with a dimerization in the iron chains and a following formation of new Fe-Fe chemical bonds. This unique feature highlights Fe5 O6 as a promising candidate for the use in innovative applications. We established that the minimal Fe-Fe distance in the octahedral chains is a key parameter that determines the type and temperature of charge ordering. This model provides new insights into charge-ordering phenomena in transition-metal oxides in general.

2.
Inorg Chem ; 56(1): 372-377, 2017 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-28001063

RESUMEN

SiO2 exhibits a high-pressure-high-temperature polymorphism, leading to an increase in silicon coordination number and density. However, for the related compound SiS2 such pressure-induced behavior has not been observed with tetrahedral coordination yet. All four crystal structures of SiS2 known so far contain silicon with tetrahedral coordination. In the orthorhombic, ambient-pressure phase these tetrahedra share edges and achieve only low space filling and density. Up to 4 GPa and 1473 K, three phases can be quenched as metastable phases from high-pressure high-temperature to ambient conditions. Space occupancy and density are increased first by edge and corner sharing and then by corner sharing alone. The structural situation of SiS2 up to the current study resembles that of SiO2 in 1960: Then, in its polymorphs only Si-O4 tetrahedra were known. But in 1961, a polymorph with rutile structure was discovered: octahedral Si-O6 coordination was established. Now, 50 years later, we report here on the transition from 4-fold to 6-fold coordination in SiS2, the sulfur analogue of silica.

3.
Proc Natl Acad Sci U S A ; 110(18): 7142-7, 2013 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-23589892

RESUMEN

Ferropericlase [(Mg,Fe)O] is one of the most abundant minerals of the earth's lower mantle. The high-spin (HS) to low-spin (LS) transition in the Fe(2+) ions may dramatically alter the physical and chemical properties of (Mg,Fe)O in the deep mantle. To understand the effects of compression on the ground electronic state of iron, electronic and magnetic states of Fe(2+) in (Mg0.75Fe0.25)O have been investigated using transmission and synchrotron Mössbauer spectroscopy at high pressures and low temperatures (down to 5 K). Our results show that the ground electronic state of Fe(2+) at the critical pressure Pc of the spin transition close to T = 0 is governed by a quantum critical point (T = 0, P = P(c)) at which the energy required for the fluctuation between HS and LS states is zero. Analysis of the data gives P(c) = 55 GPa. Thermal excitation within the HS or LS states (T > 0 K) is expected to strongly influence the magnetic as well as physical properties of ferropericlase. Multielectron theoretical calculations show that the existence of the quantum critical point at temperatures approaching zero affects not only physical properties of ferropericlase at low temperatures but also its properties at P-T of the earth's lower mantle.

4.
J Phys Condens Matter ; 30(18): 185401, 2018 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29528300

RESUMEN

High pressure Raman, resistivity and synchrotron x-ray diffraction studies on Weyl semimetals NbAs and TaAs have been carried out along with density functional theoretical (DFT) analysis to explain pressure induced structural and electronic topological phase transitions. The frequencies of first order Raman modes harden with increasing pressure, exhibiting a slope change at [Formula: see text] GPa for NbAs and [Formula: see text] GPa for TaAs. The resistivities of NbAs and TaAs exhibit a minimum at pressures close to these transition pressures and also a change in the bulk modulus is observed. Our first-principles calculations reveal that the transition is associated with an electronic Lifshitz transition at [Formula: see text] for NbAs while it is a structural phase transition from body centered tetragonal to hexagonal phase at [Formula: see text] for TaAs. Further, our DFT calculations show a structural phase transition at 24 GPa from body centered tetragonal phase to hexagonal phase.

5.
Adv Mater ; 29(18)2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28262997

RESUMEN

A pressure-induced topological quantum phase transition has been theoretically predicted for the semiconductor bismuth tellurohalide BiTeI with giant Rashba spin splitting. In this work, evolution of the electrical transport properties in BiTeI and BiTeBr is investigated under high pressure. The pressure-dependent resistivity in a wide temperature range passes through a minimum at around 3 GPa, indicating the predicted topological quantum phase transition in BiTeI. Superconductivity is observed in both BiTeI and BiTeBr, while resistivity at higher temperatures still exhibits semiconducting behavior. Theoretical calculations suggest that superconductivity may develop from the multivalley semiconductor phase. The superconducting transition temperature, Tc , increases with applied pressure and reaches a maximum value of 5.2 K at 23.5 GPa for BiTeI (4.8 K at 31.7 GPa for BiTeBr), followed by a slow decrease. The results demonstrate that BiTeX (X = I, Br) compounds with nontrivial topology of electronic states display new ground states upon compression.

6.
Nat Commun ; 7: 11038, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-26972450

RESUMEN

Transition metal dichalcogenides have attracted research interest over the last few decades due to their interesting structural chemistry, unusual electronic properties, rich intercalation chemistry and wide spectrum of potential applications. Despite the fact that the majority of related research focuses on semiconducting transition-metal dichalcogenides (for example, MoS2), recently discovered unexpected properties of WTe2 are provoking strong interest in semimetallic transition metal dichalcogenides featuring large magnetoresistance, pressure-driven superconductivity and Weyl semimetal states. We investigate the sister compound of WTe2, MoTe2, predicted to be a Weyl semimetal and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that bulk MoTe2 exhibits superconductivity with a transition temperature of 0.10 K. Application of external pressure dramatically enhances the transition temperature up to maximum value of 8.2 K at 11.7 GPa. The observed dome-shaped superconductivity phase diagram provides insights into the interplay between superconductivity and topological physics.


Asunto(s)
Electrónica , Electrones , Molibdeno/química , Superconductividad , Telurio/química , Conductividad Eléctrica , Presión , Teoría Cuántica , Temperatura de Transición
7.
Nat Commun ; 5: 3460, 2014 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-24662160

RESUMEN

Modern ab initio calculations predict ionic and superionic states in highly compressed water and ammonia. The prediction apparently contradicts state-of-the-art experimentally established phase diagrams overwhelmingly dominated by molecular phases. Here we present experimental evidence that the threshold pressure of ~120 GPa induces in molecular ammonia the process of autoionization to yet experimentally unknown ionic compound--ammonium amide. Our supplementary theoretical simulations provide valuable insight into the mechanism of autoionization showing no hydrogen bond symmetrization along the transformation path, a remarkably small energy barrier between competing phases and the impact of structural rearrangement contribution on the overall conversion rate. This discovery is bridging theory and experiment thus opening new possibilities for studying molecular interactions in hydrogen-bonded systems. Experimental knowledge on this novel ionic phase of ammonia also provides strong motivation for reconsideration of the theory of molecular ice layers formation and dynamics in giant gas planets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA