Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Breast Cancer Res ; 13(1): R17, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21294885

RESUMEN

INTRODUCTION: Novel adjuvant therapies are needed to prevent metastatic relapses in HER2-expressing breast cancer. Here, we tested whether trastuzumab-selected single-chain Fv (scFv) could be used to develop an anti-idiotype-based vaccine to inhibit growth of HER2-positive tumor cells in vitro and in vivo through induction of long-lasting HER-specific immunity. METHODS: BALB/c mice were immunized with anti-trastuzumab anti-idiotype (anti-Id) scFv (scFv40 and scFv69), which mimic human HER2. Their sera were assessed for the presence of HER2-specific Ab1' antibodies and for their ability to reduce viability of SK-OV-3 cells, a HER2-positive cancer cell line, in nude mice. MMTV.f.huHER2(Fo5) transgenic mice were immunized with scFv40 and scFv69 and, then, growth inhibition of spontaneous HER2-positive mammary tumors, humoral response, antibody isotype as well as splenocyte secretion of IL2 and IFN-γ were evaluated. RESULTS: Adoptively-transferred sera from BALB/c mice immunized with scFv40 and scFv69 contain anti-HER2 Ab1' antibodies that can efficiently inhibit growth of SK-OV-3 cell tumors in nude mice. Similarly, prophylactic vaccination with anti-Id scFv69 fully protects virgin or primiparous FVB-MMTV.f.huHER2(Fo5) females from developing spontaneous mammary tumors. Moreover, such vaccination elicits an anti-HER2 Ab1' immune response together with a scFv69-specific Th1 response with IL2 and IFN-γ cytokine secretion. CONCLUSIONS: Anti-trastuzumab anti-Id scFv69, used as a therapeutic or prophylactic vaccine, protects mice from developing HER2-positive mammary tumors by inducing both anti-HER2 Ab1' antibody production and an anti-HER2 Th2-dependent immune response. These results suggest that scFv69 could be used as an anti-Id-based vaccine for adjuvant therapy of patients with HER2-positive tumors to reverse immunological tolerance to HER2.


Asunto(s)
Anticuerpos Antiidiotipos/inmunología , Anticuerpos Monoclonales Humanizados/inmunología , Vacunas contra el Cáncer/inmunología , Tolerancia Inmunológica , Neoplasias Ováricas/inmunología , Receptor ErbB-2/inmunología , Anticuerpos de Cadena Única/inmunología , Animales , Anticuerpos Antiidiotipos/sangre , Células CHO , Línea Celular Tumoral , Supervivencia Celular/inmunología , Cricetinae , Femenino , Células HEK293 , Humanos , Inmunidad Humoral , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ratones Transgénicos , Neoplasias Ováricas/terapia , Células TH1/inmunología , Células Th2/inmunología , Trastuzumab
2.
Sci Rep ; 11(1): 2231, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33500516

RESUMEN

In ovarian carcinoma, anti-Müllerian hormone (AMH) type II receptor (AMHRII) and the AMH/AMHRII signaling pathway are potential therapeutic targets. Here, AMH dose-dependent effect on signaling and proliferation was analyzed in four ovarian cancer cell lines, including sex cord stromal/granulosa cell tumors and high grade serous adenocarcinomas (COV434-AMHRII, SKOV3-AMHRII, OVCAR8 and KGN). As previously shown, incubation with exogenous AMH at concentrations above the physiological range (12.5-25 nM) decreased cell viability. Conversely, physiological concentrations of endogenous AMH improved cancer cell viability. Partial AMH depletion by siRNAs was sufficient to reduce cell viability in all four cell lines, by 20% (OVCAR8 cells) to 40% (COV434-AMHRII cells). In the presence of AMH concentrations within the physiological range (5 to 15 pM), the newly developed anti-AMH B10 antibody decreased by 25% (OVCAR8) to 50% (KGN) cell viability at concentrations ranging between 3 and 333 nM. At 70 nM, B10 reduced clonogenic survival by 57.5%, 57.1%, 64.7% and 37.5% in COV434-AMHRII, SKOV3-AMHRII, OVCAR8 and KGN cells, respectively. In the four cell lines, B10 reduced AKT phosphorylation, and increased PARP and caspase 3 cleavage. These results were confirmed in ovarian cancer cells isolated from patients' ascites, demonstrating the translational potential of these results. Furthermore, B10 reduced COV434-MISRII tumor growth in vivo and significantly enhanced the median survival time compared with vehicle (69 vs 60 days; p = 0.0173). Our data provide evidence for a novel pro-survival autocrine role of AMH in the context of ovarian cancer, which was targeted therapeutically using an anti-AMH antibody to successfully repress tumor growth.


Asunto(s)
Hormona Antimülleriana/metabolismo , Neoplasias Ováricas/metabolismo , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Femenino , Humanos , Ovario/metabolismo , Fosforilación/fisiología
3.
Int J Oncol ; 59(1)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34013359

RESUMEN

Anti­Müllerian hormone (AMH) type II receptor (AMHRII) and the AMH/AMHRII signaling pathway are potential therapeutic targets in ovarian carcinoma. Conversely, the role of the three AMH type I receptors (AMHRIs), namely activin receptor­like kinase (ALK)2, ALK3 and ALK6, in ovarian cancer remains to be clarified. To determine the respective roles of these three AMHRIs, the present study used four ovarian cancer cell lines (COV434­AMHRII, SKOV3­AMHRII, OVCAR8, KGN) and primary cells isolated from tumor ascites from patients with ovarian cancer. The results demonstrated that ALK2 and ALK3 may be the two main AMHRIs involved in AMH signaling at physiological endogenous and supraphysiological exogenous AMH concentrations, respectively. Supraphysiological AMH concentrations (25 nM recombinant AMH) were associated with apoptosis in all four cell lines and decreased clonogenic survival in COV434­AMHRII and SKOV3­AMHRII cells. These biological effects were induced via ALK3 recruitment by AMHRII, as ALK3­AMHRII dimerization was favored at increasing AMH concentrations. By contrast, ALK2 was associated with AMHRII at physiological endogenous concentrations of AMH (10 pM). Based on these results, tetravalent IgG1­like bispecific antibodies (BsAbs) against AMHRII and ALK2, and against AMHRII and ALK3 were designed and evaluated. In vivo, COV434­AMHRII tumor cell xenograft growth was significantly reduced in all BsAb­treated groups compared with that in the vehicle group (P=0.018 for BsAb 12G4­3D7; P=0.001 for all other BsAbs). However, the growth of COV434­AMHRII tumor cell xenografts was slower in mice treated with the anti­AMRII­ALK2 BsAb 12G4­2F9 compared with that in animals that received a control BsAb that targeted AMHRII and CD5 (P=0.048). These results provide new insights into type I receptor specificity in AMH signaling pathways and may lead to an innovative therapeutic approach to modulate AMH signaling using anti­AMHRII/anti­AMHRI BsAbs.


Asunto(s)
Receptores de Activinas Tipo I/metabolismo , Hormona Antimülleriana/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Receptores de Activinas Tipo I/inmunología , Animales , Hormona Antimülleriana/genética , Hormona Antimülleriana/farmacología , Anticuerpos Biespecíficos/farmacología , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/inmunología , Línea Celular Tumoral , Supervivencia Celular , Femenino , Humanos , Ratones Desnudos , Neoplasias Ováricas/tratamiento farmacológico , Fosforilación , Receptores de Péptidos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Cancer Immunol Immunother ; 59(9): 1295-312, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20532501

RESUMEN

Each year, breast cancer accounts for more than 400,000 new cancer cases and more than 130,000 cancer deaths in Europe. Prognosis of nonmetastatic breast cancer patients is directly related to the extent of the disease, mainly nodal spreading and tumor size, and to the molecular profile, particularly HER2 over-expression. In patients with HER2-over-expressing tumors, different studies have shown cellular and/or humoral immune responses against HER2 associated with a lower tumor development at early stages of the disease. These findings have led to the hypothesis that the generation of an anti-HER2 immune response should protect patients from HER2-over-expressing tumor growth. Taken together with the clinical efficiency of trastuzumab-based anti-HER2 passive immunotherapy, these observations allowed to envisage various vaccine strategies against HER2. The induction of a stable and strong immunity by cancer vaccines is expected to lead to establishment of immune memory, thereby preventing tumor recurrence. However, an immunological tolerance against HER2 antigen exists representing a barrier to effective vaccination against this oncoprotein. As a consequence, the current challenge for vaccines is to find the best conditions to break this immunological tolerance. In this review, we will discuss the different anti-HER2 vaccine strategies currently developed; considering the strategies having reached the clinical phases as well as those still in preclinical development. The used antigen can be either composed of tumoral allogenic cells or autologous cells, or specific to HER2. It can be delivered by dendritic cells or in a DNA, peptidic or proteic form. Another area of research concerns the use of anti-idiotypic antibodies mimicking HER2.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Neoplasias de la Mama/terapia , Vacunas contra el Cáncer , Inmunización Pasiva , Receptor ErbB-2/inmunología , Animales , Anticuerpos Monoclonales Humanizados , Neoplasias de la Mama/inmunología , Ensayos Clínicos como Asunto , Femenino , Humanos , Inmunidad , Trastuzumab
5.
Eur J Med Chem ; 203: 112574, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32683167

RESUMEN

The antibody pretargeting approach for radioimmunotherapy (RIT) using inverse electron demand Diels-Alder cycloaddition (IEDDA) constitutes an emerging theranostic approach for solid cancers. However, IEDDA pretargeting has not reached clinical trial. The major limitation of the IEDDA strategy depends largely on trans-cyclooctene (TCO) stability. Indeed, TCO may isomerize into the more stable but unreactive cis-cyclooctene (CCO), leading to a drastic decrease of IEDDA efficiency. We have thus developed both efficient and reproducible synthetic pathways and analytical follow up for (PEGylated) TCO derivatives, providing high TCO isomeric purity for antibody modification. We have set up an original process to limit the isomerization of TCO to CCO before the mAbs' functionalization to allow high TCO/tetrazine cycloaddition.


Asunto(s)
Ciclooctanos/química , Compuestos Heterocíclicos con 1 Anillo/química , Reacción de Cicloadición , Isomerismo , Polietilenglicoles/química
6.
Leukemia ; 34(5): 1315-1328, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31836849

RESUMEN

Some patients with B-cell non-Hodkin lymphoma Lymphoma (NHL) become refractory to rituximab (anti-CD20 antibody) therapy associated with chemotherapy. Here, the effect of the anti-CD37 antibody-radionuclide conjugate lutetium-177 (177Lu)-lilotomab (Betalutin®) was investigated in preclinical models of NHL. In SCID mice bearing DOHH2 (transformed follicular lymphoma, FL) cell xenografts, 177Lu-lilotomab significantly delayed tumor growth, even at low activity (100 MBq/kg). In athymic mice bearing OCI-Ly8 (diffuse large B-cell lymphoma, DLBCL) or Ramos (Burkitt's lymphoma) cell xenografts, 177Lu-lilotomab activity had to be increased to 500 MBq/kg to show a significant tumor growth delay. Clonogenic and proliferation assays showed that DOHH2 cells were highly sensitive to 177Lu-lilotomab, while Ramos cells were the least sensitive, and U2932 (DLBCL), OCI-Ly8, and Rec-1 (mantle cell lymphoma) cells displayed intermediate sensitivity. The strong 177Lu-lilotomab cytotoxicity observed in DOHH2 cells correlated with reduced G2/M cell cycle arrest, lower WEE-1- and MYT-1-mediated phosphorylation of cyclin-dependent kinase-1 (CDK1), and higher apoptosis. In agreement, 177Lu-lilotomab efficacy in vitro, in vivo, and in patient samples was increased when combined with G2/M cell cycle arrest inhibitors (MK-1775 and PD-166285). These results indicate that 177Lu-lilotomab is particularly efficient in treating tumors with reduced inhibitory CDK1 phosphorylation, such as transformed FL.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Radiofármacos/farmacología , Animales , Apoptosis , Proliferación Celular , Humanos , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Ratones , Ratones SCID , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Theranostics ; 9(22): 6706-6718, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31588245

RESUMEN

Rationale : Pretargeted radioimmunotherapy (PRIT) based upon bioorthogonal click chemistry has been investigated for the first time in the context of peritoneal carcinomatosis using a CEA-targeting 35A7 mAb bearing trans-cyclooctene (TCO) moieties and several 177Lu-labeled tetrazine (Tz) radioligands. Starting from three Tz probes containing PEG linkers of varying lengths between the DOTA and Tz groups (i.e. PEGn = 3, 7, or 11, respectively, for Tz-1, Tz-2, and Tz-3), we selected [177Lu]Lu-Tz-2 as the most appropriate for pretargeted SPECT imaging and demonstrated its efficacy in tumor growth control. Methods: An orthotopic model of peritoneal carcinomatosis (PC) was obtained following the intraperitoneal (i.p.) injection of A431-CEA-Luc cells in nude mice. Tumor growth was assessed using bioluminescence imaging. Anti-CEA 35A7 mAb was grafted with 2-3 TCO per immunoglobulin. Pretargeted SPECT imaging and biodistribution experiments were performed to quantify the activity concentrations of [177Lu]Lu-Tz-1-3 in tumors and non-target organs to determine the optimal Tz probe for the PRIT of PC. Results: The pharmacokinetic profiles of [177Lu]Lu-Tz-1-3 alone were determined using both SPECT imaging and biodistribution experiments. These data revealed that [177Lu]Lu-Tz-1 was cleared via both the renal and hepatic systems, while [177Lu]Lu-Tz-2 and [177Lu]Lu-Tz-3 were predominantly excreted via the renal system. In addition, these results illuminated that the longer the PEG linker, the more rapidly the Tz radioligand was cleared from the peritoneal cavity. The absorbed radiation dose corresponding to pretargeting with 35A7-TCO followed 24 h later by [177Lu]Lu-Tz-1-4 was higher for tumors following the administration of [177Lu]Lu-Tz-2 (i.e. 0.59 Gy/MBq) compared to either [177Lu]Lu-Tz-1 (i.e. 0.25 Gy/MBq) and [177Lu]Lu-Tz-3 (i.e. 0.18 Gy/MBq). In a longitudinal PRIT study, we showed that the i.p. injection of 40 MBq of [177Lu]Lu-Tz-2 24 hours after the systemic administration of 35A7-TCO significantly slowed tumor growth compared to control mice receiving only saline or 40 MBq of [177Lu]Lu-Tz-2 alone. Ex vivo measurement of the peritoneal carcinomatosis index (PCI) confirmed that PRIT significantly reduced tumor growth (PCI = 15.5 ± 2.3 after PRIT vs 30.0 ± 2.3 and 30.8 ± 1.4 for the NaCl and [177Lu]Lu-Tz-2 alone groups, respectively). Conclusion : Our results clearly demonstrate the impact of the length of PEG linkers upon the biodistribution profiles of 177Lu-labeled Tz radioligands. Furthermore, we demonstrated for the first time the possibility of using bioorthogonal chemistry for both the pretargeted SPECT and PRIT of peritoneal carcinomatosis.


Asunto(s)
Neoplasias Peritoneales/diagnóstico por imagen , Neoplasias Peritoneales/terapia , Radioinmunoterapia/métodos , Radiofármacos/química , Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Antineoplásicos Inmunológicos/química , Antineoplásicos Inmunológicos/farmacología , Antígeno Carcinoembrionario/inmunología , Línea Celular Tumoral , Química Clic , Femenino , Humanos , Mediciones Luminiscentes , Lutecio/química , Ratones Desnudos , Prueba de Estudio Conceptual , Radioisótopos/química , Radiofármacos/farmacocinética , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Clin Cancer Res ; 25(15): 4775-4790, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31061069

RESUMEN

PURPOSE: For the development of new anticancer therapeutic radiopharmaceuticals, including alpha particle emitters, it is important to determine the contribution of targeted effects in irradiated cells, and also of nontargeted effects in nonirradiated neighboring cells, because they may affect the therapeutic efficacy and contribute to side effects. EXPERIMENTAL DESIGN: Here, we investigated the contribution of nontargeted cytotoxic and genotoxic effects in vitro and in vivo (in xenografted mice) during alpha (212Pb/212Bi, 213Bi) and Auger (125I) radioimmunotherapy (RIT). RESULTS: Between 67% and 94% (alpha RIT) and 8% and 15% (Auger RIT) of cancer cells were killed by targeted effects, whereas 7% to 36% (alpha RIT) and 27% to 29% (Auger RIT) of cells were killed by nontargeted effects. We then demonstrated that the nontargeted cell response to alpha and Auger RIT was partly driven by lipid raft-mediated activation of p38 kinase and JNK. Reactive oxygen species also played a significant role in these nontargeted effects, as demonstrated by NF-κB activation and the inhibitory effects of antioxidant enzymes and radical scavengers. Compared with RIT alone, the use of RIT with ASMase inhibitor (imipramine) or with a lipid raft disruptor (e.g., methyl-beta-cyclodextrin or filipin) led to an increase in clonogenic cell survival in vitro and to larger tumors and less tissue DNA damage in vivo. These results were supported by an inhibitory effect of pravastatin on Auger RIT. CONCLUSIONS: Cell membrane-mediated nontargeted effects play a significant role during Auger and alpha RIT, and drugs that modulate cholesterol level, such as statins, could interfere with RIT efficacy.


Asunto(s)
Colesterol/metabolismo , Imipramina/farmacología , MAP Quinasa Quinasa 4/metabolismo , Neoplasias/radioterapia , Radioinmunoterapia/métodos , Radiofármacos/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Inhibidores de Captación Adrenérgica/farmacología , Animales , Antibacterianos/farmacología , Bismuto/farmacología , Línea Celular Tumoral , Supervivencia Celular , Femenino , Filipina/farmacología , Humanos , Radioisótopos de Yodo/farmacología , Radioisótopos de Plomo/farmacología , Ratones , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/metabolismo , Radioisótopos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto , beta-Ciclodextrinas/farmacología
9.
J Immunother Cancer ; 7(1): 29, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30717773

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) treatment is currently restricted to chemotherapy. Hence, tumor-specific molecular targets and/or alternative therapeutic strategies for TNBC are urgently needed. Immunotherapy is emerging as an exciting treatment option for TNBC patients. The aspartic protease cathepsin D (cath-D), a marker of poor prognosis in breast cancer (BC), is overproduced and hypersecreted by human BC cells. This study explores whether cath-D is a tumor cell-associated extracellular biomarker and a potent target for antibody-based therapy in TNBC. METHODS: Cath-D prognostic value and localization was evaluated by transcriptomics, proteomics and immunohistochemistry in TNBC. First-in-class anti-cath-D human scFv fragments binding to both human and mouse cath-D were generated using phage display and cloned in the human IgG1 λ format (F1 and E2). Anti-cath-D antibody biodistribution, antitumor efficacy and in vivo underlying mechanisms were investigated in TNBC MDA-MB-231 tumor xenografts in nude mice. Antitumor effect was further assessed in TNBC patient-derived xenografts (PDXs). RESULTS: High CTSD mRNA levels correlated with shorter recurrence-free survival in TNBC, and extracellular cath-D was detected in the tumor microenvironment, but not in matched normal breast stroma. Anti-cath-D F1 and E2 antibodies accumulated in TNBC MDA-MB-231 tumor xenografts, inhibited tumor growth and improved mice survival without apparent toxicity. The Fc function of F1, the best antibody candidate, was essential for maximal tumor inhibition in the MDA-MB-231 model. Mechanistically, F1 antitumor response was triggered through natural killer cell activation via IL-15 upregulation, associated with granzyme B and perforin production, and the release of antitumor IFNγ cytokine. The F1 antibody also prevented the tumor recruitment of immunosuppressive tumor-associated macrophages M2 and myeloid-derived suppressor cells, a specific effect associated with a less immunosuppressive tumor microenvironment highlighted by TGFß decrease. Finally, the antibody F1 inhibited tumor growth of two TNBC PDXs, isolated from patients resistant or not to neo-adjuvant chemotherapy. CONCLUSION: Cath-D is a tumor-specific extracellular target in TNBC suitable for antibody-based therapy. Immunomodulatory antibody-based strategy against cath-D is a promising immunotherapy to treat patients with TNBC.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Catepsina D/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Anticuerpos Monoclonales/farmacocinética , Antineoplásicos Inmunológicos/farmacocinética , Catepsina D/genética , Catepsina D/inmunología , Línea Celular Tumoral , Femenino , Humanos , Inmunoterapia , Ratones Desnudos , ARN Mensajero/metabolismo , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Gynecol Oncol ; 108(1): 141-8, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17988723

RESUMEN

OBJECTIVE: Müllerian inhibiting substance type II receptor (MISIIR) is expressed by ovarian, breast, and prostate cancers [Masiakos PT, et al. Human ovarian cancer, cell lines, and primary ascites cells express the human Mullerian inhibiting substance (MIS) Type II Receptor, bind, and are responsive to MIS. Clin Cancer Res 1999;5:3488-99; Hoshiya Y, et al. Mullerian inhibiting substance promotes interferon {gamma}-induced gene expression and apoptosis in breast cancer cells. J Biol Chem 2003;278:51703-12; Hoshiya Y, et al. Mullerian inhibiting substance induces NFkB signaling in breast and prostate cancer cells. Mol. Cell. Endocrinol. 2003;211:43-9. [1-3]]. We investigated the expression patterns of MISIIR in benign and malignant gynecologic tissues and benign non-gynecologic tissues to better assess the relevance of MISIIR as a target for new therapeutic and diagnostic approaches to gynecologic cancers. Secondarily, we examined the impact of MISIIR expression on overall survival (OS) and disease-free survival (DFS) in a cohort of epithelial ovarian cancers (EOC). METHODS: Reverse-transcription polymerase chain reaction (RT-PCR), immunoblotting, and immunohistochemistry (IHC) were used to determine MISIIR expression. EOC cell lines (10), primary EOCs (12), and tissue microarrays (TMAs) containing benign gynecologic (179) and non-gynecologic tissues (25), EOC (182), endometrial carcinomas (109), uterine sarcomas (98), and ovarian dysgerminomas (22) were examined for MISIIR expression. Clinical data were collected for a cohort of 182 EOCs. RESULTS: Ninety-two percent of primary EOCs and 44% of EOC cell lines expressed MISIIR mRNA. We observed moderate or strong MISIIR expression via IHC in the majority of gynecologic cancers: EOC 69% (125/182), ovarian dysgerminomas 77% (17/22), endometrial cancers 75% (82/109), uterine malignant mixed Müllerian tumors (MMMT) 59% (30/51), uterine leiomyosarcomas (LMS) 52% (15/29), and endometrial stromal sarcomas (ESS) 22% (4/18). Over 74% of normal non-gynecologic tissues did not express MISIIR. There was a significant correlation between MISIIR expression and improved OS (p=0.025, Chi square). CONCLUSIONS: In the largest study to date, we report that MISIIR is highly expressed by a wide variety of gynecologic cancers, including cancers currently without effective systemic therapies. Low levels of expression in select non-gynecologic tissues coupled with high expression in gynecologic malignancies make MISIIR an attractive target for novel therapeutics and tumor-directed imaging in the management of gynecologic cancers. Further investigation into the impact of MISIIR expression and OS is also warranted.


Asunto(s)
Neoplasias de los Genitales Femeninos/enzimología , Receptores de Péptidos/biosíntesis , Receptores de Factores de Crecimiento Transformadores beta/biosíntesis , Animales , Western Blotting , Células CHO , Línea Celular Tumoral , Cricetinae , Cricetulus , Femenino , Neoplasias de los Genitales Femeninos/genética , Humanos , Inmunohistoquímica , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores de Péptidos/genética , Receptores de Factores de Crecimiento Transformadores beta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tasa de Supervivencia , Transfección
11.
Clin Cancer Res ; 13(11): 3356-62, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17545543

RESUMEN

PURPOSE: Pancreatic carcinoma is highly resistant to therapy. Epidermal growth factor receptor (EGFR) and HER2 have been reported to be both dysregulated in this cancer. To evaluate the in vivo effect of binding both EGFR and HER2 with two therapeutic humanized monoclonal antibodies (mAb), we treated human pancreatic carcinoma xenografts, expressing high EGFR and low HER2 levels. EXPERIMENTAL DESIGN: Nude mice, bearing xenografts of BxPC-3 or MiaPaCa-2 human pancreatic carcinoma cell lines, were injected twice weekly for 4 weeks with different doses of anti-EGFR (matuzumab) and anti-HER2 (trastuzumab) mAbs either alone or in combination. The effect of the two mAbs, on HER receptor phosphorylation, was also studied in vitro by Western blot analysis. RESULTS: The combined mAb treatment significantly inhibited tumor progression of the BxPC-3 xenografts compared with single mAb injection (P = 0.006) or no treatment (P = 0.0004) and specifically induced some complete remissions. The two mAbs had more antitumor effect than 4-fold greater doses of each mAb. The significant synergistic effect of the two mAbs was confirmed on the MiaPaCa-2 xenograft and on another type of carcinoma, SK-OV-3 ovarian carcinoma xenografts. In vitro, the cooperative effect of the two mAbs was associated with a decrease in EGFR and HER2 receptor phosphorylation. CONCLUSIONS: Anti-HER2 mAb has a synergistic therapeutic effect when combined with an anti-EGFR mAb on pancreatic carcinomas with low HER2 expression. These observations may open the way to the use of these two mAbs in a large panel of carcinomas expressing different levels of the two HER receptors.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Carcinoma/inmunología , Sinergismo Farmacológico , Receptores ErbB/inmunología , Neoplasias Pancreáticas/inmunología , Receptor ErbB-2/inmunología , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales Humanizados , Antineoplásicos/farmacología , Línea Celular Tumoral , Receptores ErbB/química , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Trasplante de Neoplasias , Receptor ErbB-2/química , Trastuzumab
12.
J Nucl Med ; 59(8): 1234-1242, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29674421

RESUMEN

We have developed the 16F12 mouse monoclonal antibody (mAb), which targets the Müllerian-inhibiting substance receptor, type II (MISRII), expressed by ovarian tumors. Here, we assessed in preclinical models the possibility of using radiolabeled 16F12 in a theranostic approach for small-volume ovarian peritoneal carcinomatosis, such as after cytoreductive surgery. Methods: DOTA-, DTPA- or deferoxamine mesylate-conjugated 16F12 mAb was radiolabeled with ß-particle (177Lu) or α-particle (213Bi) emitters for therapeutic use and with 89Zr for PET imaging. On the 13th postxenograft day, mice bearing intraperitoneal MISRII-positive AN3CA endometrial carcinoma cell xenografts were treated by conventional intraperitoneal radioimmunotherapy (IP-RIT) with 10 MBq of 177Lu-16F12 or 12.9 MBq of 213Bi-16F12 or by brief intraperitoneal radioimmunotherapy (BIP-RIT) using 50 MBq of 177Lu-16F12 or 37 MBq of 213Bi-16F12. For BIP-RIT, 30 min after injection of the radiolabeled mAbs, the peritoneal cavity was washed to remove the unbound radioactivity. The biodistribution of 177Lu- and 213Bi-16F12 mAbs was determined and then used for dose assessment. Hematologic toxicity was also monitored. Results: The 16F12 mAb was satisfactorily radiolabeled for both therapy and imaging. IP-RIT with 177Lu-16F12 was slightly more efficient in delaying tumor growth than IP-RIT with 213Bi-16F12. Conversely, 213Bi-16F12 was more efficient than 177Lu-16F12 in BIP-RIT. The biodistribution analysis showed that the tumor-to-blood uptake ratio was significantly higher with BIP-RIT than with IP-RIT for both 213Bi- and 177Lu-16F12. Hematologic toxicity was more pronounced with 177Lu-16F12 than with 213Bi-16F12. SPECT/CT images (after BIP-RIT with 177Lu-16F12) and PET/CT images (after injection of 89Zr-16F12 in the tail vein) showed focal uptake at the tumor site. Conclusion: Radiolabeled 16F12 could represent a new theranostic tool for small-volume ovarian peritoneal carcinomatosis. Specifically, 213Bi-16F12-based BIP-RIT could be proposed to selected patients as an alternative adjuvant treatment immediately after cytoreductive surgery. An anti-MISRII mAb is currently being used in a first-in-human study, thus making radiolabeled anti-MISRII mAbs a realistic theranostic option for the clinic.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/uso terapéutico , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/radioterapia , Receptores de Péptidos/inmunología , Receptores de Factores de Crecimiento Transformadores beta/inmunología , Animales , Anticuerpos Monoclonales/farmacocinética , Línea Celular Tumoral , Deferoxamina/química , Femenino , Compuestos Heterocíclicos con 1 Anillo/química , Humanos , Marcaje Isotópico , Ratones , Neoplasias Ováricas/metabolismo , Ácido Pentético/química , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radioquímica , Distribución Tisular
13.
Sci Rep ; 7(1): 14918, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29097747

RESUMEN

Bioorthogonal chemistry represents a challenging approach in pretargeted radioimmunotherapy (PRIT). We focus here on mAb modifications by grafting an increase amount of trans-cyclooctene (TCO) derivatives (0 to 30 equivalents with respect to mAb) bearing different polyethylene glycol (PEG) linkers between mAb and TCO (i.e. PEG0 (1), PEG4 (2) and PEG12 (3)) and assessing their functionality. We used colorectal xenograft (HT29/Ts29.2) and peritoneal carcinomatosis (A431-CEA-Luc/35A7) as tumor cells/mAbs models and fluorescent tetrazines (TZ). MALDI-TOF MS shows that grafting with 2,3 increases significantly the number of TCO per mAb compared with no PEG. In vitro immunofluorescence showed that Ts29.2 and 35A7 labeling intensity is correlated with the number of TCO when using 1,3 while signals reach a maximum at 10 equivalents when using 2. Under 10 equivalents conditions, the capacity of resulting mAbs-1-3 for antigen recognition is similar when reported per grafted TCO and comparable to mAbs without TCO. In vivo, on both models, pretargeting with mAbs-2,3 followed by TZ injection induced a fluorescent signal two times lower than with mAbs-1. These findings suggest that while PEG linkers allow a better accessibility for TCO grafting, it might decrease the number of reactive TCO. In conclusion, mAb-1 represents the best candidate for PRIT.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/uso terapéutico , Neoplasias Colorrectales/radioterapia , Inmunoconjugados/química , Inmunoconjugados/uso terapéutico , Animales , Anticuerpos Monoclonales/farmacología , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Reacción de Cicloadición , Ciclooctanos/química , Ciclooctanos/farmacología , Ciclooctanos/uso terapéutico , Femenino , Humanos , Inmunoconjugados/farmacología , Ratones , Neoplasias Peritoneales/patología , Neoplasias Peritoneales/radioterapia , Polietilenglicoles/química , Polietilenglicoles/farmacología , Polietilenglicoles/uso terapéutico , Radioinmunoterapia
14.
Oncotarget ; 8(59): 99950-99965, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29245952

RESUMEN

Müllerian inhibiting substance, also called anti-Müllerian hormone (AMH), inhibits proliferation and induces apoptosis of AMH type II receptor-positive tumor cells, such as human ovarian cancers (OCs). On this basis, a humanized glyco-engineered monoclonal antibody (3C23K) has been developed. The aim of this study was therefore to experimentally confirm the therapeutic potential of 3C23K in human OCs. We first determined by immunofluorescence, immunohistochemistry and cytofluorometry analyses the expression of AMHRII in patient's tumors and found that a majority (60 to 80% depending on the detection technique) of OCs were positive for this marker. We then provided evidence that the tumor stroma of OC is enriched in tumor-associated macrophages and that these cells are responsible for 3C23K-induced killing of tumor cells through ADCP and ADCC mechanisms. In addition, we showed that 3C23K reduced macrophages induced-T cells immunosuppression. Finally, we evaluated the therapeutic efficacy of 3C23K alone and in combination with a carboplatin-paclitaxel chemotherapy in a panel of OC Patient-Derived Xenografts. In those experiments, we showed that 3C23K significantly increased the proportion and the quality of chemotherapy-based in vivo responses. Altogether, our data support the potential interest of AMHRII targeting in human ovarian cancers and the evaluation of 3C23K in further clinical trials.

15.
Oncotarget ; 8(23): 37061-37079, 2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28427157

RESUMEN

Ovarian cancer is the leading cause of death in women with gynecological cancers and despite recent advances, new and more efficient therapies are crucially needed. Müllerian Inhibiting Substance type II Receptor (MISRII, also named AMHRII) is expressed in most ovarian cancer subtypes and is a novel potential target for ovarian cancer immunotherapy. We previously developed and tested 12G4, the first murine monoclonal antibody (MAb) against human MISRII. Here, we report the humanization, affinity maturation and glyco-engineering steps of 12G4 to generate the Fc-optimized 3C23K MAb, and the evaluation of its in vivo anti-tumor activity. The epitopes of 3C23K and 12G4 were strictly identical and 3C23K affinity for MISRII was enhanced by a factor of about 14 (KD = 5.5 × 10-11 M vs 7.9 × 10-10 M), while the use of the EMABling® platform allowed the production of a low-fucosylated 3C23K antibody with a 30-fold KD improvement of its affinity to FcγRIIIa. In COV434-MISRII tumor-bearing mice, 3C23K reduced tumor growth more efficiently than 12G4 and its combination with carboplatin was more efficient than each monotherapy with a mean tumor size of 500, 1100 and 100 mm3 at the end of treatment with 3C23K (10 mg/kg, Q3-4D12), carboplatin (60 mg/kg, Q7D4) and 3C23K+carboplatin, respectively. Conversely, 3C23K-FcKO, a 3C23K form without affinity for the FcγRIIIa receptor, did not display any anti-tumor effect in vivo. These results strongly suggested that 3C23K mechanisms of action are mainly Fc-related. In vitro, antibody-dependent cytotoxicity (ADCC) and antibody-dependent cell phagocytosis (ADCP) were induced by 3C23K, as demonstrated with human effector cells. Using human NK cells, 50% of the maximal lysis was obtained with a 46-fold lower concentration of low-fucosylated 3C23K (2.9 ng/ml) than of 3C23K expressed in CHO cells (133.35 ng/ml). As 3C23K induced strong ADCC with human PBMC but almost none with murine PBMC, antibody-dependent cell phagocytosis (ADCP) was then investigated. 3C23K-dependent (100 ng/ml) ADCP was more active with murine than human macrophages (only 10% of living target cells vs. about 25%). These in vitro results suggest that the reduced ADCC with murine effectors could be partially balanced by ADCP activity in in vivo experiments. Taken together, these preclinical data indicate that 3C23K is a new promising therapeutic candidate for ovarian cancer immunotherapy and justify its recent introduction in a phase I clinical trial.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Antineoplásicos/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Receptores de Péptidos/inmunología , Receptores de Factores de Crecimiento Transformadores beta/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Anticuerpos Monoclonales Humanizados/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Antineoplásicos/inmunología , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/inmunología , Femenino , Glicosilación , Humanos , Ratones Desnudos , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/patología , Ingeniería de Proteínas
16.
Oncotarget ; 8(13): 22034-22047, 2017 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-28423546

RESUMEN

Tetraspanin 8 (TSPAN8) overexpression is correlated with poor prognosis in human colorectal cancer (CRC). A murine mAb Ts29.2 specific for human TSPAN8 provided significant efficiency for immunotherapy in CRC pre-clinical models. We therefore evaluate the feasability of targeting TSPAN8 in CRC with radiolabeled Ts29.2. Staining of tissue micro-arrays with Ts29.2 revealed that TSPAN8 espression was restricted to a few human healthy tissues. DOTA-Ts29.2 was radiolabeled with 111In or 177Lu with radiochemical purities >95%, specific activity ranging from 300 to 600 MBq/mg, and radioimmunoreactive fractions >80%. The biodistribution of [111In]DOTA-Ts29.2 in nude mice bearing HT29 or SW480 CRC xenografts showed a high specificity of tumor localization with high tumor/blood ratios (HT29: 4.3; SW480-TSPAN8: 3.9 at 72h and 120h post injection respectively). Tumor-specific absorbed dose calculations for [177Lu]DOTA-Ts29.2 was 1.89 Gy/MBq, establishing the feasibility of using radioimmunotherapy of CRC with this radiolabeled antibody. A significant inhibition of tumor growth in HT29 tumor-bearing mice treated with [177Lu]DOTA-Ts29.2 was observed compared to control groups. Ex vivo experiments revealed specific DNA double strand breaks associated with cell apoptosis in [177Lu]DOTA-Ts29.2 treated tumors compared to controls. Overall, we provide a proof-of-concept for the use of [111In/177Lu]DOTA-Ts29.2 that specifically target in vivo aggressive TSPAN8-positive cells in CRC.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Radioisótopos de Indio/uso terapéutico , Lutecio/uso terapéutico , Radioinmunoterapia , Tetraspaninas/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/farmacocinética , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/metabolismo , Femenino , Humanos , Inmunoconjugados/inmunología , Radioisótopos de Indio/farmacocinética , Lutecio/farmacocinética , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Terapia Molecular Dirigida , Radiofármacos/farmacocinética , Radiofármacos/uso terapéutico , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Antioxid Redox Signal ; 25(8): 467-84, 2016 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-27224059

RESUMEN

AIMS: We investigated whether radiation-induced nontargeted effects are involved in the cytotoxic effects of anticell surface monoclonal antibodies labeled with Auger electron emitters, such as iodine 125 (monoclonal antibodies labeled with (125)I [(125)I-mAbs]). RESULTS: We showed that the cytotoxicity of (125)I-mAbs targeting the cell membrane of p53(+/+) HCT116 colon cancer cells is mainly due to nontargeted effects. Targeted and nontargeted cytotoxicities were inhibited in vitro following lipid raft disruption with Methyl-ß-cyclodextrin (MBCD) or filipin or use of radical oxygen species scavengers. (125)I-mAb efficacy was associated with acid sphingomyelinase activation and modulated through activation of the AKT, extracellular signal-related kinase ½ (ERK1/2), p38 kinase, c-Jun N-terminal kinase (JNK) signaling pathways, and also of phospholipase C-γ (PLC-γ), proline-rich tyrosine kinase 2 (PYK-2), and paxillin, involved in Ca(2+) fluxes. Moreover, the nontargeted response induced by directing 5-[(125)I]iodo-2'-deoxyuridine to the nucleus was comparable to that of (125)I-mAb against cell surface receptors. In vivo, we found that the statistical significance of tumor growth delay induced by (125)I-mAb was removed after MBCD treatment and observed oxidative DNA damage beyond the expected Auger electron range. These results suggest the involvement of nontargeted effects in vivo also. INNOVATION: Low-energy Auger electrons, such as those emitted by (125)I, have a short tissue range and are usually targeted to the nucleus to maximize their cytotoxicity. In this study, we show that targeting the cancer cell surface with (125)I-mAbs produces a lipid raft-mediated nontargeted response that compensates for the inferior efficacy of non-nuclear targeting. CONCLUSION: Our findings describe the mechanisms involved in the efficacy of (125)I-mAbs targeting the cancer cell surface. Antioxid. Redox Signal. 25, 467-484.


Asunto(s)
Membrana Celular/metabolismo , Membrana Celular/efectos de la radiación , Electrones , Estrés Oxidativo/efectos de la radiación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Supervivencia Celular/efectos de la radiación , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Técnicas de Inactivación de Genes , Genes p53 , Células HCT116 , Humanos , Inmunoconjugados/farmacología , Radioisótopos de Yodo/efectos adversos , Sistema de Señalización de MAP Quinasas , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/metabolismo , Microdominios de Membrana/efectos de la radiación , Modelos Biológicos , Fosfoproteínas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
18.
Biochem J ; 379(Pt 3): 785-93, 2004 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-14750901

RESUMEN

Anti-Müllerian hormone (AMH) [also called Müllerian inhibiting substance (MIS)] is a member of the transforming growth factor-beta family. AMH and its type II receptor (AMHR-II) are involved in the regression of the Müllerian ducts in the male embryo, and in gonadal functions in the adult. AMH is also known to be a marker of granulosa and Sertoli cell tumours. We selected a high-affinity monoclonal antibody, mAb 12G4, specific for human AMHR-II (hAMHR-II), by FACS analysis, Western blotting and immunohistochemical staining of a hAMHR-II-transfected CHO (Chinese hamster ovary) cell line, normal adult testicular tissue and granulosa cell tumours. Using peptide array screening, we identified the binding sequences of mAb 12G4 and AMH on the receptor. Identification of Asp53 and Ala55 as critical residues in the DRAQVEM minimal epitopic sequence of mAb 12G4 definitively accounted for the lack of cross-reactivity with the murine receptor, in which there is a glycine residue in place of an aspartic acid residue. In a structural model, the AMH-binding interface was mapped to the concave side of hAMHR-II, whereas the mAb 12G4-binding site was located on the convex side. mAb 12G4, the first mAb to be raised against hAMHR-II, therefore has unique properties that could make it a valuable tool for the immunotargeting of tumours expressing this receptor.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Glicoproteínas/metabolismo , Receptores de Péptidos/inmunología , Receptores de Péptidos/metabolismo , Hormonas Testiculares/metabolismo , Alanina/metabolismo , Secuencia de Aminoácidos , Animales , Hormona Antimülleriana , Especificidad de Anticuerpos , Asparagina/metabolismo , Sitios de Unión , Western Blotting , Células CHO , Línea Celular , Cricetinae , Mapeo Epitopo , Citometría de Flujo , Tumor de Células de la Granulosa/metabolismo , Humanos , Células Intersticiales del Testículo/metabolismo , Ligandos , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Receptores de Péptidos/química , Receptores de Factores de Crecimiento Transformadores beta , Células de Sertoli/metabolismo
19.
Front Med (Lausanne) ; 2: 12, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25853132

RESUMEN

During the last decades, new radionuclide-based targeted therapies have emerged as efficient tools for cancer treatment. Targeted radionuclide therapies (TRTs) are based on a multidisciplinary approach that involves the cooperation of specialists in several research fields. Among them, radiobiologists investigate the biological effects of ionizing radiation, specifically the molecular and cellular mechanisms involved in the radiation response. Most of the knowledge about radiation effects concerns external beam radiation therapy (EBRT) and radiobiology has then strongly contributed to the development of this therapeutic approach. Similarly, radiobiology and dosimetry are also assumed to be ways for improving TRT, in particular in the therapy of solid tumors, which are radioresistant. However, extrapolation of EBRT radiobiology to TRT is not straightforward. Indeed, the specific physical characteristics of TRT (heterogeneous and mixed irradiation, protracted exposure, and low absorbed dose rate) differ from those of conventional EBRT (homogeneous irradiation, short exposure, and high absorbed dose rate), and consequently the response of irradiated tissues might be different. Therefore, specific TRT radiobiology needs to be explored. Determining dose-effect correlation is also a prerequisite for rigorous preclinical radiobiology studies because dosimetry provides the necessary referential to all TRT situations. It is required too for developing patient-tailored TRT in the clinic in order to estimate the best dose for tumor control, while protecting the healthy tissues, thereby improving therapeutic efficacy. Finally, it will allow to determine the relative contribution of targeted effects (assumed to be dose-related) and non-targeted effects (assumed to be non-dose-related) of ionizing radiation. However, conversely to EBRT where it is routinely used, dosimetry is still challenging in TRT. Therefore, it constitutes with radiobiology, one of the main challenges of TRT in the future.

20.
Peptides ; 24(3): 339-45, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12732330

RESUMEN

The C-terminus of the transcription factor p53 seems to play an important role by controlling the specific DNA-binding activity, which is directly associated with sensing damaged DNA. Another region located in the N-terminus of the protein has also been shown to regulate the DNA-binding activity of the protein. This activity can be promoted by peptides derived from these two negative regulatory regions or by binding of antibodies directed against the C-terminus of the p53 protein. Using both phage display peptide and multiple peptide synthesis technologies, we demonstrated that mAbs HR231 and Pab421, two p53-activating antibodies, recognize peptides derived from the C-terminus of p53, as previously described, but also peptides from the N-terminus of the protein, suggesting that these peptides are part of a conformational epitope. Furthermore, the sequences of these peptides are located in the two negative regulatory regions identified on the p53 protein, which is consistent with the biological activity of mAbs HR231 and Pab421.


Asunto(s)
Anticuerpos/inmunología , Anticuerpos/farmacología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/inmunología , Proteína p53 Supresora de Tumor/agonistas , Proteína p53 Supresora de Tumor/química , Secuencia de Aminoácidos , Sitios de Unión de Anticuerpos , Datos de Secuencia Molecular , Fragmentos de Péptidos/metabolismo , Biblioteca de Péptidos , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Proteína p53 Supresora de Tumor/inmunología , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA