Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Glia ; 68(6): 1148-1164, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31851405

RESUMEN

Myelin, one of the most important adaptations of vertebrates, is essential to ensure efficient propagation of the electric impulse in the nervous system and to maintain neuronal integrity. In the central nervous system (CNS), the development of oligodendrocytes and the process of myelination are regulated by the coordinated action of several positive and negative cell-extrinsic factors. We and others previously showed that secretases regulate the activity of proteins essential for myelination. We now report that the neuronal α-secretase ADAM17 controls oligodendrocyte differentiation and myelin formation in the CNS. Ablation of Adam17 in neurons impairs in vivo and in vitro oligodendrocyte differentiation, delays myelin formation throughout development and results in hypomyelination. Furthermore, we show that this developmental defect is, in part, the result of altered Notch/Jagged 1 signaling. Surprisingly, in vivo conditional loss of Adam17 in immature oligodendrocytes has no effect on myelin formation. Collectively, our data indicate that the neuronal α-secretase ADAM17 is required for proper CNS myelination. Further, our studies confirm that secretases are important post-translational regulators of myelination although the mechanisms controlling CNS and peripheral nervous system (PNS) myelination are distinct.


Asunto(s)
Proteína ADAM17/metabolismo , Sistema Nervioso Central/metabolismo , Vaina de Mielina/metabolismo , Neuronas/metabolismo , Oligodendroglía/metabolismo , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/metabolismo , Proteína ADAM17/genética , Animales , Diferenciación Celular/fisiología , Sistema Nervioso Central/citología , Ratones Transgénicos , Neurogénesis/fisiología
2.
Acta Neuropathol ; 131(2): 281-298, 2016 02.
Artículo en Inglés | MEDLINE | ID: mdl-26687980

RESUMEN

Remyelination in multiple sclerosis (MS) lesions often remains incomplete despite the presence of oligodendrocyte progenitor cells (OPCs). Amongst other factors, successful remyelination depends on the phagocytic clearance of myelin debris. However, the proteins in myelin debris that act as potent and selective inhibitors on OPC differentiation and inhibit CNS remyelination remain unknown. Here, we identify the transmembrane signalling protein EphrinB3 as important mediator of this inhibition, using a protein analytical approach in combination with a primary rodent OPC assay. In the presence of EphrinB3, OPCs fail to differentiate. In a rat model of remyelination, infusion of EphrinB3 inhibits remyelination. In contrast, masking EphrinB3 epitopes using antibodies promotes remyelination. Finally, we identify EphrinB3 in MS lesions and demonstrate that MS lesion extracts inhibit OPC differentiation while antibody-mediated masking of EphrinB3 epitopes promotes it. Our findings suggest that EphrinB3 could be a target for therapies aiming at promoting remyelination in demyelinating disease.


Asunto(s)
Efrina-B3/metabolismo , Esclerosis Múltiple/metabolismo , Vaina de Mielina/metabolismo , Células-Madre Neurales/metabolismo , Oligodendroglía/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Efrina-B3/genética , Epítopos/metabolismo , Femenino , Humanos , Macrófagos/metabolismo , Macrófagos/patología , Ratones Noqueados , Esclerosis Múltiple/patología , Vaina de Mielina/patología , Regeneración Nerviosa/fisiología , Células-Madre Neurales/patología , Neurogénesis/fisiología , Oligodendroglía/patología , Distribución Aleatoria , Ratas Sprague-Dawley , Receptor EphA4/metabolismo
3.
J Neurosci ; 31(10): 3719-28, 2011 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-21389227

RESUMEN

Failure of oligodendrocyte precursor cell (OPC) differentiation has been recognized as the leading cause for the failure of myelin regeneration in diseases such as multiple sclerosis (MS). One explanation for the failure of OPC differentiation in MS is the presence of inhibitory molecules in demyelinated lesions. So far only a few inhibitory substrates have been identified in MS lesions. Semaphorin 3A (Sema3A), a secreted member of the semaphorin family, can act as repulsive guidance cue for neuronal and glial cells in the CNS. Recent studies suggest that Sema3A is also expressed in active MS lesions. However, the implication of Sema3A expression in MS lesions remains unclear as OPCs are commonly present in chronic demyelinated lesions. In the present study we identify Sema3A as a potent, selective, and reversible inhibitor of OPC differentiation in vitro. Furthermore, we show that administration of Sema3A into demyelinating lesions in the rat CNS results in a failure of remyelination. Our results imply an important role for Sema3A in the differentiation block occurring in MS lesions.


Asunto(s)
Diferenciación Celular/fisiología , Vaina de Mielina/metabolismo , Regeneración Nerviosa/fisiología , Oligodendroglía/metabolismo , Semaforina-3A/metabolismo , Análisis de Varianza , Animales , Animales Recién Nacidos , Diferenciación Celular/efectos de los fármacos , Femenino , Inmunohistoquímica , Hibridación in Situ , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/patología , Oligodendroglía/efectos de los fármacos , Oligodendroglía/patología , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semaforina-3A/farmacología
4.
J Neurosci ; 31(1): 225-33, 2011 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-21209208

RESUMEN

Death receptor (DR) signaling has a major impact on the outcome of numerous neurological diseases, including ischemic stroke. DRs mediate not only cell death signals, but also proinflammatory responses and cell proliferation. Identification of regulatory proteins that control the switch between apoptotic and alternative DR signaling opens new therapeutic opportunities. Fas apoptotic inhibitory molecule 2 (Faim2) is an evolutionary conserved, neuron-specific inhibitor of Fas/CD95-mediated apoptosis. To investigate its role during development and in disease models, we generated Faim2-deficient mice. The ubiquitous null mutation displayed a viable and fertile phenotype without overt deficiencies. However, lack of Faim2 caused an increase in susceptibility to combined oxygen-glucose deprivation in primary neurons in vitro as well as in caspase-associated cell death, stroke volume, and neurological impairment after cerebral ischemia in vivo. These processes were rescued by lentiviral Faim2 gene transfer. In summary, we provide evidence that Faim2 is a novel neuroprotective molecule in the context of cerebral ischemia.


Asunto(s)
Infarto Encefálico/prevención & control , Ataque Isquémico Transitorio/complicaciones , Ataque Isquémico Transitorio/patología , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptor fas/metabolismo , Análisis de Varianza , Animales , Infarto Encefálico/etiología , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Muerte Celular/genética , Células Cultivadas , Corteza Cerebral/citología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Glucosa/deficiencia , Proteínas Fluorescentes Verdes/genética , Hipoxia , Etiquetado Corte-Fin in Situ/métodos , Ataque Isquémico Transitorio/genética , Proteínas de la Membrana/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Proteínas del Tejido Nervioso/deficiencia , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/prevención & control , Fosfopiruvato Hidratasa/metabolismo , Factores de Tiempo , Transfección/métodos , Receptor fas/genética
7.
J Cell Biol ; 166(1): 121-31, 2004 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-15226307

RESUMEN

Oligodendrocytes are critical for the development of the plasma membrane and cytoskeleton of the axon. In this paper, we show that fast axonal transport is also dependent on the oligodendrocyte. Using a mouse model of hereditary spastic paraplegia type 2 due to a null mutation of the myelin Plp gene, we find a progressive impairment in fast retrograde and anterograde transport. Increased levels of retrograde motor protein subunits are associated with accumulation of membranous organelles distal to nodal complexes. Using cell transplantation, we show categorically that the axonal phenotype is related to the presence of the overlying Plp null myelin. Our data demonstrate a novel role for oligodendrocytes in the local regulation of axonal function and have implications for the axonal loss associated with secondary progressive multiple sclerosis.


Asunto(s)
Axones/metabolismo , Oligodendroglía/metabolismo , Paraplejía Espástica Hereditaria/patología , Alelos , Animales , Transporte Biológico , Western Blotting , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Heterocigoto , Inmunohistoquímica , Ratones , Ratones Mutantes , Vaina de Mielina/metabolismo , Nervio Óptico/metabolismo , Fenotipo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/metabolismo , Médula Espinal/patología , Factores de Tiempo
8.
Nat Neurosci ; 14(4): 437-41, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21423191

RESUMEN

Schwann cell myelination is tightly regulated by timely expression of key transcriptional regulators that respond to specific environmental cues, but the molecular mechanisms underlying such a process are poorly understood. We found that the acetylation state of NF-κB, which is regulated by histone deacetylases (HDACs) 1 and 2, is critical for orchestrating the myelination program. Mice lacking both HDACs 1 and 2 (HDAC1/2) exhibited severe myelin deficiency with Schwann cell development arrested at the immature stage. NF-κB p65 became heavily acetylated in HDAC1/2 mutants, inhibiting the expression of positive regulators of myelination and inducing the expression of differentiation inhibitors. We observed that the NF-κB protein complex switched from associating with p300 to associating with HDAC1/2 as Schwann cells differentiated. NF-κB and HDAC1/2 acted in a coordinated fashion to regulate the transcriptionally linked chromatin state for Schwann cell myelination. Thus, our results reveal an HDAC-mediated developmental switch for controlling myelination in the peripheral nervous system.


Asunto(s)
Histona Desacetilasa 1/fisiología , Histona Desacetilasa 2/fisiología , FN-kappa B/metabolismo , Fibras Nerviosas Mielínicas/enzimología , Células de Schwann/enzimología , Nervio Ciático/crecimiento & desarrollo , Acetilación , Animales , Animales Recién Nacidos , Diferenciación Celular/genética , Células Cultivadas , Cromatina/genética , Proteína p300 Asociada a E1A/metabolismo , Histona Desacetilasa 1/genética , Histona Desacetilasa 2/genética , Ratones , Ratones Noqueados , Fibras Nerviosas Mielínicas/patología , Fibras Nerviosas Mielínicas/ultraestructura , Ratas , Células de Schwann/patología , Células de Schwann/ultraestructura , Nervio Ciático/patología , Nervio Ciático/fisiopatología , Factor de Transcripción ReIA/metabolismo , Activación Transcripcional/fisiología
9.
Glia ; 55(4): 341-51, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17133418

RESUMEN

Duplication of PLP1, an X-linked gene encoding the major myelin membrane protein of the human CNS, is the most frequent cause of Pelizaeus-Merzbacher disease (PMD). Transgenic mice with extra copies of the wild type Plp1 gene, a valid model of PMD, also develop a dysmyelinating phenotype dependant on gene dosage. In this study we have examined the effect of increasing Plp1 gene dosage on levels of PLP/DM20 and on other representative myelin proteins. In cultured oligodendrocytes and early myelinating oligodendrocytes in vivo, increased gene dosage leads to elevated levels of PLP/DM20 in the cell body. During myelination, small increases in Plp1 gene dosage (mice hemizygous for the transgene) elevate the level of PLP/DM20 in oligodendrocyte soma but cause only minimal and transient effects on the protein composition and structure of myelin suggesting that cells can regulate the incorporation of proteins into myelin. However, larger increases in dosage (mice homozygous for the transgene) are not well tolerated, leading to hypomyelination and alteration in the cellular distribution of PLP/DM20. A disproportionate amount of PLP/DM20 is retained in the cell soma, probably in autophagic vacuoles and lysosomes whereas the level in myelin is reduced. Increased Plp1 gene dosage affects other myelin proteins, particularly MBP, which is transitorily reduced in hemizygous mice but consistently and markedly lower in homozygotes in both myelin and naïve or early myelinating oligodendrocytes. Whether the reduced MBP is implicated in the pathogenesis of dysmyelination is yet to be established.


Asunto(s)
Proteínas de la Mielina/biosíntesis , Proteína Proteolipídica de la Mielina/biosíntesis , Vaina de Mielina/metabolismo , Proteínas del Tejido Nervioso/genética , Enfermedad de Pelizaeus-Merzbacher/metabolismo , Animales , Northern Blotting , Western Blotting , Recuento de Células , Células Cultivadas , Dosificación de Gen , Expresión Génica/fisiología , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteína Proteolipídica de la Mielina/genética , Oligodendroglía/metabolismo , ARN Mensajero/biosíntesis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Médula Espinal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA