Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Polymers (Basel) ; 14(8)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35458281

RESUMEN

Despite the extensive research, the moisture-based degradation of the 3D-printed polypropylene and polylactic acid blend is not yet reported. This research is a part of study reported on partial biodegradable blends proposed for large-scale additive manufacturing applications. However, the previous work does not provide information about the stability of the proposed blend system against moisture-based degradation. Therefore, this research presents a combination of excessive physical interlocking and minimum chemical grafting in a partial biodegradable blend to achieve stability against in-process thermal and moisture-based degradation. In this regard, a blend of polylactic acid and polypropylene compatibilized with polyethylene graft maleic anhydride is presented for fused filament fabrication. The research implements, for the first time, an ANOVA for combined thermal and moisture-based degradation. The results are explained using thermochemical and microscopic techniques. Scanning electron microscopy is used for analyzing the printed blend. Fourier transform infrared spectroscopy has allowed studying the intermolecular interactions due to the partial blending and degradation mechanism. Differential scanning calorimetry analyzes the blending (physical interlocking or chemical grafting) and thermochemical effects of the degradation mechanism. The thermogravimetric analysis further validates the physical interlocking and chemical grafting. The novel concept of partial blending with excessive interlocking reports high mechanical stability against moisture-based degradation.

2.
Materials (Basel) ; 13(20)2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053899

RESUMEN

Titanium-aluminium-vanadium (Ti 6Al 4V) alloys, nickel alloys (Inconel 718), and duraluminum alloys (AA 2000 series) are widely used materials in numerous engineering applications wherein machined features are required to having good surface finish. In this research, micro-impressions of 12 µm depth are milled on these materials though laser milling. Response surface methodology based design of experiment is followed resulting in 54 experiments per work material. Five laser parameters are considered naming lamp current intensity (I), pulse frequency (f), scanning speed (V), layer thickness (LT), and track displacement (TD). Process performance is evaluated and compared in terms of surface roughness through several statistical and microscopic analysis. The significance, strength, and direction of each of the five laser parametric effects are deeply investigated for the said alloys. Optimized laser parameters are proposed to achieve minimum surface roughness. For the optimized combination of laser parameters to achieve minimum surface roughness (Ra) in the titanium alloy, the said alloy consists of I = 85%, f = 20 kHz, V = 250 mm/s, TD = 11 µm, and LT = 3 µm. Similarly, optimized parameters for nickel alloy are as follows: I = 85%, f = 20 kHz, V = 256 mm/s, TD = 8 µm, and LT = 1 µm. Minimum roughness (Ra) on the surface of aluminum alloys can be achieved under the following optimized parameters: I = 75%, f = 20 kHz, V = 200 mm/s, TD = 12 µm, and LT = 3 µm. Micro-impressions produced under optimized parameters have surface roughness of 0.56 µm, 2.46 µm, and 0.54 µm on titanium alloy, nickel alloy, and duralumin, respectively. Some engineering applications need to have high surface roughness (e.g., in case of biomedical implants) or some desired level of roughness. Therefore, validated statistical models are presented to estimate the desired level of roughness against any laser parametric settings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA