Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(8): e110454, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36727601

RESUMEN

Cells need to sense stresses to initiate the execution of the dormant cell death program. Since the discovery of the first BH3-only protein Bad, BH3-only proteins have been recognized as indispensable stress sensors that induce apoptosis. BH3-only proteins have so far not been identified in Drosophila despite their importance in other organisms. Here, we identify the first Drosophila BH3-only protein and name it sayonara. Sayonara induces apoptosis in a BH3 motif-dependent manner and interacts genetically and biochemically with the BCL-2 homologous proteins, Buffy and Debcl. There is a positive feedback loop between Sayonara-mediated caspase activation and autophagy. The BH3 motif of sayonara phylogenetically appeared at the time of the ancestral gene duplication that led to the formation of Buffy and Debcl in the dipteran lineage. To our knowledge, this is the first identification of a bona fide BH3-only protein in Drosophila, thus providing a unique example of how cell death mechanisms can evolve both through time and across taxa.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Apoptosis/fisiología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas de Drosophila/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(5): e2308776121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38252831

RESUMEN

We present a drug design strategy based on structural knowledge of protein-protein interfaces selected through virus-host coevolution and translated into highly potential small molecules. This approach is grounded on Vinland, the most comprehensive atlas of virus-human protein-protein interactions with annotation of interacting domains. From this inspiration, we identified small viral protein domains responsible for interaction with human proteins. These peptides form a library of new chemical entities used to screen for replication modulators of several pathogens. As a proof of concept, a peptide from a KSHV protein, identified as an inhibitor of influenza virus replication, was translated into a small molecule series with low nanomolar antiviral activity. By targeting the NEET proteins, these molecules turn out to be of therapeutic interest in a nonalcoholic steatohepatitis mouse model with kidney lesions. This study provides a biomimetic framework to design original chemistries targeting cellular proteins, with indications going far beyond infectious diseases.


Asunto(s)
Gripe Humana , Virus , Animales , Ratones , Humanos , Proteoma , Péptidos/farmacología , Descubrimiento de Drogas
4.
Proc Natl Acad Sci U S A ; 119(35): e2206610119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35947637

RESUMEN

The coronavirus disease 19 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a coronavirus that spilled over from the bat reservoir. Despite numerous clinical trials and vaccines, the burden remains immense, and the host determinants of SARS-CoV-2 susceptibility and COVID-19 severity remain largely unknown. Signatures of positive selection detected by comparative functional genetic analyses in primate and bat genomes can uncover important and specific adaptations that occurred at virus-host interfaces. We performed high-throughput evolutionary analyses of 334 SARS-CoV-2-interacting proteins to identify SARS-CoV adaptive loci and uncover functional differences between modern humans, primates, and bats. Using DGINN (Detection of Genetic INNovation), we identified 38 bat and 81 primate proteins with marks of positive selection. Seventeen genes, including the ACE2 receptor, present adaptive marks in both mammalian orders, suggesting common virus-host interfaces and past epidemics of coronaviruses shaping their genomes. Yet, 84 genes presented distinct adaptations in bats and primates. Notably, residues involved in ubiquitination and phosphorylation of the inflammatory RIPK1 have rapidly evolved in bats but not primates, suggesting different inflammation regulation versus humans. Furthermore, we discovered residues with typical virus-host arms race marks in primates, such as in the entry factor TMPRSS2 or the autophagy adaptor FYCO1, pointing to host-specific in vivo interfaces that may be drug targets. Finally, we found that FYCO1 sites under adaptation in primates are those associated with severe COVID-19, supporting their importance in pathogenesis and replication. Overall, we identified adaptations involved in SARS-CoV-2 infection in bats and primates, enlightening modern genetic determinants of virus susceptibility and severity.


Asunto(s)
COVID-19 , Quirópteros , Evolución Molecular , Adaptación al Huésped , Primates , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , COVID-19/genética , Quirópteros/virología , Predisposición Genética a la Enfermedad , Adaptación al Huésped/genética , Humanos , Pandemias , Primates/genética , Primates/virología , SARS-CoV-2/genética , Selección Genética , Glicoproteína de la Espiga del Coronavirus/genética
5.
PLoS Pathog ; 18(5): e1010328, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35605026

RESUMEN

During annual influenza epidemics, influenza B viruses (IBVs) co-circulate with influenza A viruses (IAVs), can become predominant and cause severe morbidity and mortality. Phylogenetic analyses suggest that IAVs (primarily avian viruses) and IBVs (primarily human viruses) have diverged over long time scales. Identifying their common and distinctive features is an effective approach to increase knowledge about the molecular details of influenza infection. The virus-encoded RNA-dependent RNA polymerases (FluPolB and FluPolA) are PB1-PB2-PA heterotrimers that perform transcription and replication of the viral genome in the nucleus of infected cells. Initiation of viral mRNA synthesis requires a direct association of FluPol with the host RNA polymerase II (RNAP II), in particular the repetitive C-terminal domain (CTD) of the major RNAP II subunit, to enable "cap-snatching" whereby 5'-capped oligomers derived from nascent RNAP II transcripts are pirated to prime viral transcription. Here, we present the first high-resolution co-crystal structure of FluPolB bound to a CTD mimicking peptide at a binding site crossing from PA to PB2. By performing structure-based mutagenesis of FluPolB and FluPolA followed by a systematic investigation of FluPol-CTD binding, FluPol activity and viral phenotype, we demonstrate that IBVs and IAVs have evolved distinct binding interfaces to recruit the RNAP II CTD, despite the CTD sequence being highly conserved across host species. We find that the PB2 627 subdomain, a major determinant of FluPol-host cell interactions and IAV host-range, is involved in CTD-binding for IBVs but not for IAVs, and we show that FluPolB and FluPolA bind to the host RNAP II independently of the CTD. Altogether, our results suggest that the CTD-binding modes of IAV and IBV may represent avian- and human-optimized binding modes, respectively, and that their divergent evolution was shaped by the broader interaction network between the FluPol and the host transcriptional machinery.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Humanos , Virus de la Influenza A/genética , Virus de la Influenza B/metabolismo , Filogenia , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Replicación Viral/genética
6.
Brief Bioinform ; 22(2): 642-663, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33147627

RESUMEN

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a novel virus of the family Coronaviridae. The virus causes the infectious disease COVID-19. The biology of coronaviruses has been studied for many years. However, bioinformatics tools designed explicitly for SARS-CoV-2 have only recently been developed as a rapid reaction to the need for fast detection, understanding and treatment of COVID-19. To control the ongoing COVID-19 pandemic, it is of utmost importance to get insight into the evolution and pathogenesis of the virus. In this review, we cover bioinformatics workflows and tools for the routine detection of SARS-CoV-2 infection, the reliable analysis of sequencing data, the tracking of the COVID-19 pandemic and evaluation of containment measures, the study of coronavirus evolution, the discovery of potential drug targets and development of therapeutic strategies. For each tool, we briefly describe its use case and how it advances research specifically for SARS-CoV-2. All tools are free to use and available online, either through web applications or public code repositories. Contact:evbc@unj-jena.de.


Asunto(s)
COVID-19/prevención & control , Biología Computacional , SARS-CoV-2/aislamiento & purificación , Investigación Biomédica , COVID-19/epidemiología , COVID-19/virología , Genoma Viral , Humanos , Pandemias , SARS-CoV-2/genética
7.
Genome Res ; 25(9): 1347-59, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26206155

RESUMEN

The capacity of mosquitoes to resist insecticides threatens the control of diseases such as dengue and malaria. Until alternative control tools are implemented, characterizing resistance mechanisms is crucial for managing resistance in natural populations. Insecticide biodegradation by detoxification enzymes is a common resistance mechanism; however, the genomic changes underlying this mechanism have rarely been identified, precluding individual resistance genotyping. In particular, the role of copy number variations (CNVs) and polymorphisms of detoxification enzymes have never been investigated at the genome level, although they can represent robust markers of metabolic resistance. In this context, we combined target enrichment with high-throughput sequencing for conducting the first comprehensive screening of gene amplifications and polymorphisms associated with insecticide resistance in mosquitoes. More than 760 candidate genes were captured and deep sequenced in several populations of the dengue mosquito Ae. aegypti displaying distinct genetic backgrounds and contrasted resistance levels to the insecticide deltamethrin. CNV analysis identified 41 gene amplifications associated with resistance, most affecting cytochrome P450s overtranscribed in resistant populations. Polymorphism analysis detected more than 30,000 variants and strong selection footprints in specific genomic regions. Combining Bayesian and allele frequency filtering approaches identified 55 nonsynonymous variants strongly associated with resistance. Both CNVs and polymorphisms were conserved within regions but differed across continents, confirming that genomic changes underlying metabolic resistance to insecticides are not universal. By identifying novel DNA markers of insecticide resistance, this study opens the way for tracking down metabolic changes developed by mosquitoes to resist insecticides within and among populations.


Asunto(s)
Aedes/efectos de los fármacos , Aedes/genética , Genoma de los Insectos , Genómica , Resistencia a los Insecticidas , Animales , Análisis por Conglomerados , Amplificación de Genes , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Insecticidas/farmacología , Dosificación Letal Mediana , Familia de Multigenes , Mutación , Nitrilos/farmacología , Polimorfismo Genético , Piretrinas/farmacología , Reproducibilidad de los Resultados , Transcripción Genética
8.
BMC Genomics ; 18(1): 574, 2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28774270

RESUMEN

BACKGROUND: Enterohemorrhagic Escherichia coli (EHEC) are zoonotic agents associated with outbreaks worldwide. Growth of EHEC strains in ground beef could be inhibited by background microbiota that is present initially at levels greater than that of the pathogen E. coli. However, how the microbiota outcompetes the pathogenic bacteria is unknown. Our objective was to identify metabolic pathways of EHEC that were altered by natural microbiota in order to improve our understanding of the mechanisms controlling the growth and survival of EHECs in ground beef. RESULTS: Based on 16S metagenomics analysis, we identified the microbial community structure in our beef samples which was an essential preliminary for subtractively analyzing the gene expression of the EHEC strains. Then, we applied strand-specific RNA-seq to investigate the effects of this microbiota on the global gene expression of EHEC O2621765 and O157EDL933 strains by comparison with their behavior in beef meat without microbiota. In strain O2621765, the expression of genes connected with nitrate metabolism and nitrite detoxification, DNA repair, iron and nickel acquisition and carbohydrate metabolism, and numerous genes involved in amino acid metabolism were down-regulated. Further, the observed repression of ftsL and murF, involved respectively in building the cytokinetic ring apparatus and in synthesizing the cytoplasmic precursor of cell wall peptidoglycan, might help to explain the microbiota's inhibitory effect on EHECs. For strain O157EDL933, the induced expression of the genes implicated in detoxification and the general stress response and the repressed expression of the peR gene, a gene negatively associated with the virulence phenotype, might be linked to the survival and virulence of O157:H7 in ground beef with microbiota. CONCLUSION: In the present study, we show how RNA-Seq coupled with a 16S metagenomics analysis can be used to identify the effects of a complex microbial community on relevant functions of an individual microbe within it. These findings add to our understanding of the behavior of EHECs in ground beef. By measuring transcriptional responses of EHEC, we could identify putative targets which may be useful to develop new strategies to limit their shedding in ground meat thus reducing the risk of human illnesses.


Asunto(s)
Escherichia coli Enterohemorrágica/genética , Escherichia coli Enterohemorrágica/fisiología , Perfilación de la Expresión Génica , Microbiota/genética , Carne Roja/microbiología , Aminoácidos/biosíntesis , Aminoácidos/metabolismo , Transporte Biológico/genética , Membrana Celular/metabolismo , Pared Celular/metabolismo , Regulación hacia Abajo , Escherichia coli Enterohemorrágica/citología , Escherichia coli Enterohemorrágica/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Especificidad de la Especie
9.
Brief Bioinform ; 16(5): 813-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25600654

RESUMEN

The number of samples needed to identify significant effects is a key question in biomedical studies, with consequences on experimental designs, costs and potential discoveries. In metabolic phenotyping studies, sample size determination remains a complex step. This is due particularly to the multiple hypothesis-testing framework and the top-down hypothesis-free approach, with no a priori known metabolic target. Until now, there was no standard procedure available to address this purpose. In this review, we discuss sample size estimation procedures for metabolic phenotyping studies. We release an automated implementation of the Data-driven Sample size Determination (DSD) algorithm for MATLAB and GNU Octave. Original research concerning DSD was published elsewhere. DSD allows the determination of an optimized sample size in metabolic phenotyping studies. The procedure uses analytical data only from a small pilot cohort to generate an expanded data set. The statistical recoupling of variables procedure is used to identify metabolic variables, and their intensity distributions are estimated by Kernel smoothing or log-normal density fitting. Statistically significant metabolic variations are evaluated using the Benjamini-Yekutieli correction and processed for data sets of various sizes. Optimal sample size determination is achieved in a context of biomarker discovery (at least one statistically significant variation) or metabolic exploration (a maximum of statistically significant variations). DSD toolbox is encoded in MATLAB R2008A (Mathworks, Natick, MA) for Kernel and log-normal estimates, and in GNU Octave for log-normal estimates (Kernel density estimates are not robust enough in GNU octave). It is available at http://www.prabi.fr/redmine/projects/dsd/repository, with a tutorial at http://www.prabi.fr/redmine/projects/dsd/wiki.


Asunto(s)
Metabolismo , Fenotipo , Tamaño de la Muestra
10.
Nucleic Acids Res ; 43(Database issue): D583-7, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25392406

RESUMEN

VirHostNet release 2.0 (http://virhostnet.prabi.fr) is a knowledgebase dedicated to the network-based exploration of virus-host protein-protein interactions. Since the previous VirhostNet release (2009), a second run of manual curation was performed to annotate the new torrent of high-throughput protein-protein interactions data from the literature. This resource is shared publicly, in PSI-MI TAB 2.5 format, using a PSICQUIC web service. The new interface of VirHostNet 2.0 is based on Cytoscape web library and provides a user-friendly access to the most complete and accurate resource of virus-virus and virus-host protein-protein interactions as well as their projection onto their corresponding host cell protein interaction networks. We hope that the VirHostNet 2.0 system will facilitate systems biology and gene-centered analysis of infectious diseases and will help to identify new molecular targets for antiviral drugs design. This resource will also continue to help worldwide scientists to improve our knowledge on molecular mechanisms involved in the antiviral response mediated by the cell and in the viral strategies selected by viruses to hijack the host immune system.


Asunto(s)
Bases de Datos de Proteínas , Mapeo de Interacción de Proteínas , Proteínas Virales/metabolismo , Internet , Virosis/metabolismo , Virosis/virología
11.
J Proteome Res ; 15(5): 1659-69, 2016 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-27049334

RESUMEN

Nucleolin (NCL) is a major component of the cell nucleolus, which has the ability to rapidly shuttle to several other cells' compartments. NCL plays important roles in a variety of essential functions, among which are ribosome biogenesis, gene expression, and cell growth. However, the precise mechanisms underlying NCL functions are still unclear. Our study aimed to provide new information on NCL functions via the identification of its nuclear interacting partners. Using an interactomics approach, we identified 140 proteins co-purified with NCL, among which 100 of them were specifically found to be associated with NCL after RNase digestion. The functional classification of these proteins confirmed the prominent role of NCL in ribosome biogenesis and additionally revealed the possible involvement of nuclear NCL in several pre-mRNA processing pathways through its interaction with RNA helicases and proteins participating in pre-mRNA splicing, transport, or stability. NCL knockdown experiments revealed that NCL regulates the localization of EXOSC10 and the amount of ZC3HAV1, two components of the RNA exosome, further suggesting its involvement in the control of mRNA stability. Altogether, this study describes the first nuclear interactome of human NCL and provides the basis for further understanding the mechanisms underlying the essential functions of this nucleolar protein.


Asunto(s)
Fosfoproteínas/fisiología , Proteómica/métodos , Proteínas de Unión al ARN/fisiología , Complejo Multienzimático de Ribonucleasas del Exosoma/química , Humanos , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Unión Proteica , ARN Helicasas/metabolismo , Estabilidad del ARN , Proteínas de Unión al ARN/metabolismo , Ribosomas , Nucleolina
12.
EMBO Rep ; 14(10): 938-44, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24008843

RESUMEN

Virus-host interactomes are instrumental to understand global perturbations of cellular functions induced by infection and discover new therapies. The construction of such interactomes is, however, technically challenging and time consuming. Here we describe an original method for the prediction of high-confidence interactions between viral and human proteins through a combination of structure and high-quality interactome data. Validation was performed for the NS1 protein of the influenza virus, which led to the identification of new host factors that control viral replication.


Asunto(s)
Interacciones Huésped-Patógeno , Modelos Biológicos , Proteínas no Estructurales Virales/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular Tumoral , Perros , Humanos , Células de Riñón Canino Madin Darby , Datos de Secuencia Molecular , Orthomyxoviridae/metabolismo , Orthomyxoviridae/fisiología , Unión Proteica , Proteínas no Estructurales Virales/química , Replicación Viral
13.
BMC Genomics ; 15: 926, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25341495

RESUMEN

BACKGROUND: Despite the intensive use of Bacillus thuringiensis israelensis (Bti) toxins for mosquito control, little is known about the long term effect of exposure to this cocktail of toxins on target mosquito populations. In contrast to the many cases of resistance to Bacillus thuringiensis Cry toxins observed in other insects, there is no evidence so far for Bti resistance evolution in field mosquito populations. High fitness costs measured in a Bti selected mosquito laboratory strain suggest that evolving resistance to Bti is costly. The aim of the present study was to identify transcription level and polymorphism variations associated with resistance to Bti toxins in the dengue vector Aedes aegypti. We used RNA sequencing (RNA-seq) for comparing a laboratory-selected strain showing elevated resistance to Bti toxins and its parental non-selected susceptible strain. As the resistant strain displayed two marked larval development phenotypes (slow and normal), each phenotype was analyzed separately in order to evidence potential links between resistance mechanisms and mosquito life-history traits. RESULTS: A total of 12,458 genes were detected of which 844 were differentially transcribed between the resistant and susceptible strains. Polymorphism analysis revealed a total of 68,541 SNPs of which 12,571 SNPs exhibited more than 40% frequency difference between the resistant and susceptible strains, affecting 2,953 genes. Bti resistance is associated with changes in the transcription level of enzymes involved in detoxification and chitin metabolism. Among previously described Bti-toxin receptors, four alkaline phosphatases (ALPs) were differentially transcribed between resistant and susceptible larvae, and non-synonymous changes affected the protein sequence of one cadherin, six aminopeptidases (APNs) and four α-amylases. Other putative Cry receptors located in lipid rafts, such as flotillin and glycoside hydrolases, were under-transcribed and/or contained non-synonymous substitutions. Finally, immunity-related genes showed contrasted transcription and polymorphisms patterns between the two developmental resistant phenotypes, suggesting the existence of trade-offs between Bti-resistance, life-history traits and immunity. CONCLUSIONS: The present study is the first to analyze the whole transcriptome of Bti-resistant mosquitoes by RNA-seq, shedding light on the importance of studying both transcription levels and sequence polymorphism variations to get a comprehensive view of insecticide resistance.


Asunto(s)
Aedes/efectos de los fármacos , Aedes/genética , Bacillus thuringiensis/metabolismo , Toxinas Bacterianas/toxicidad , Aedes/enzimología , Aedes/crecimiento & desarrollo , Aedes/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas , Enzimas/genética , Enzimas/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Resistencia a los Insecticidas/genética , Larva , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Fenotipo , Polimorfismo de Nucleótido Simple , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ARN , Transcriptoma
14.
BMC Genomics ; 15: 174, 2014 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-24593293

RESUMEN

BACKGROUND: Mosquito control programmes using chemical insecticides are increasingly threatened by the development of resistance. Such resistance can be the consequence of changes in proteins targeted by insecticides (target site mediated resistance), increased insecticide biodegradation (metabolic resistance), altered transport, sequestration or other mechanisms. As opposed to target site resistance, other mechanisms are far from being fully understood. Indeed, insecticide selection often affects a large number of genes and various biological processes can hypothetically confer resistance. In this context, the aim of the present study was to use RNA sequencing (RNA-seq) for comparing transcription level and polymorphism variations associated with adaptation to chemical insecticides in the mosquito Aedes aegypti. Biological materials consisted of a parental susceptible strain together with three child strains selected across multiple generations with three insecticides from different classes: the pyrethroid permethrin, the neonicotinoid imidacloprid and the carbamate propoxur. RESULTS: After ten generations, insecticide-selected strains showed elevated resistance levels to the insecticides used for selection. RNA-seq data allowed detecting over 13,000 transcripts, of which 413 were differentially transcribed in insecticide-selected strains as compared to the susceptible strain. Among them, a significant enrichment of transcripts encoding cuticle proteins, transporters and enzymes was observed. Polymorphism analysis revealed over 2500 SNPs showing > 50% allele frequency variations in insecticide-selected strains as compared to the susceptible strain, affecting over 1000 transcripts. Comparing gene transcription and polymorphism patterns revealed marked differences among strains. While imidacloprid selection was linked to the over transcription of many genes, permethrin selection was rather linked to polymorphism variations. Focusing on detoxification enzymes revealed that permethrin selection strongly affected the polymorphism of several transcripts encoding cytochrome P450 monooxygenases likely involved in insecticide biodegradation. CONCLUSIONS: The present study confirmed the power of RNA-seq for identifying concomitantly quantitative and qualitative transcriptome changes associated with insecticide resistance in mosquitoes. Our results suggest that transcriptome modifications can be selected rapidly by insecticides and affect multiple biological functions. Previously neglected by molecular screenings, polymorphism variations of detoxification enzymes may play an important role in the adaptive response of mosquitoes to insecticides.


Asunto(s)
Aedes/efectos de los fármacos , Aedes/genética , Regulación de la Expresión Génica/efectos de los fármacos , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , ARN Mensajero/genética , Animales , Mapeo Cromosómico , Análisis por Conglomerados , Femenino , Perfilación de la Expresión Génica , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Inactivación Metabólica/genética , Ratones , Anotación de Secuencia Molecular , Polimorfismo Genético , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ARN , Transcriptoma
15.
Genome Res ; 21(12): 2190-202, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21900387

RESUMEN

Fragile X syndrome (FXS) is the first cause of inherited intellectual disability, due to the silencing of the X-linked Fragile X Mental Retardation 1 gene encoding the RNA-binding protein FMRP. While extensive studies have focused on the cellular and molecular basis of FXS, neither human Fragile X patients nor the mouse model of FXS--the Fmr1-null mouse--have been profiled systematically at the metabolic and neurochemical level to provide a complementary perspective on the current, yet scattered, knowledge of FXS. Using proton high-resolution magic angle spinning nuclear magnetic resonance ((1)H HR-MAS NMR)-based metabolic profiling, we have identified a metabolic signature and biomarkers associated with FXS in various brain regions of Fmr1-deficient mice. Our study highlights for the first time that Fmr1 gene inactivation has profound, albeit coordinated consequences in brain metabolism leading to alterations in: (1) neurotransmitter levels, (2) osmoregulation, (3) energy metabolism, and (4) oxidative stress response. To functionally connect Fmr1-deficiency to its metabolic biomarkers, we derived a functional interaction network based on the existing knowledge (literature and databases) and show that the FXS metabolic response is initiated by distinct mRNA targets and proteins interacting with FMRP, and then relayed by numerous regulatory proteins. This novel "integrated metabolome and interactome mapping" (iMIM) approach advantageously unifies novel metabolic findings with previously unrelated knowledge and highlights the contribution of novel cellular pathways to the pathophysiology of FXS. These metabolomic and integrative systems biology strategies will contribute to the development of potential drug targets and novel therapeutic interventions, which will eventually benefit FXS patients.


Asunto(s)
Química Encefálica , Encéfalo/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil/metabolismo , Metaboloma , Biología de Sistemas/métodos , Animales , Biomarcadores/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/patología , Humanos , Ratones , Ratones Noqueados
16.
Bioinformatics ; 29(10): 1348-9, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23508967

RESUMEN

MOTIVATION: Supervised multivariate statistical analyses are often required to analyze the high-density spectral information in metabolic datasets acquired from complex mixtures in metabolic phenotyping studies. Here we present an implementation of the SRV-Statistical Recoupling of Variables-algorithm as an open-source Matlab and GNU Octave toolbox. SRV allows the identification of similarity between consecutive variables resulting from the high-resolution bucketing. Similar variables are gathered to restore the spectral dependency within the datasets and identify metabolic NMR signals. The correlation and significance of these new NMR variables for a given effect under study can then be measured and represented on a loading plot to allow a visual and efficient identification of candidate biomarkers. Further on, correlations between these candidate biomarkers can be visualized on a two-dimensional pseudospectrum, representing a correlation map, helping to understand the modifications of the underlying metabolic network. AVAILABILITY: SRV toolbox is encoded in MATLAB R2008A (Mathworks, Natick, MA) and in GNU Octave. It is available free of charge at http://www.prabi.fr/redmine/projects/srv/repository with a tutorial. CONTACT: benjamin.blaise@chu-lyon.fr or vincent.navratil@univ-lyon1.fr.


Asunto(s)
Algoritmos , Biomarcadores/química , Análisis Multivariante , Programas Informáticos , Humanos , Redes y Vías Metabólicas , Resonancia Magnética Nuclear Biomolecular
17.
Biol Lett ; 10(12): 20140716, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25540155

RESUMEN

Worldwide evolution of mosquito resistance to chemical insecticides represents a major challenge for public health, and the future of vector control largely relies on the development of biological insecticides that can be used in combination with chemicals (integrated management), with the expectation that populations already resistant to chemicals will not become readily resistant to biological insecticides. However, little is known about the metabolic pathways affected by selection with chemical or biological insecticides. Here we show that Aedes aegypti, a laboratory mosquito strain selected with a biological insecticide (Bacillus thuringiensis israelensis, Bti) evolved increased transcription of many genes coding for endopeptidases while most genes coding for detoxification enzymes were under-expressed. By contrast, in strains selected with chemicals, genes encoding detoxification enzymes were mostly over-expressed. In all the resistant strains, genes involved in immune response were under-transcribed, suggesting that basal immunity might be a general adjustment variable to compensate metabolic costs caused by insecticide selection. Bioassays generally showed no evidence for an increased susceptibility of selected strains towards the other insecticide type, and all chemical-resistant strains were as susceptible to Bti as the unselected parent strain, which is a good premise for sustainable integrated management of mosquito populations resistant to chemicals.


Asunto(s)
Aedes/genética , Perfilación de la Expresión Génica , Genes de Insecto , Insecticidas/farmacología , Control Biológico de Vectores , Animales
18.
Virus Evol ; 10(1): veae022, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617843

RESUMEN

Large dsDNA viruses from the Naldaviricetes class are currently composed of four viral families infecting insects and/or crustaceans. Since the 1970s, particles described as filamentous viruses (FVs) have been observed by electronic microscopy in several species of Hymenoptera parasitoids but until recently, no genomic data was available. This study provides the first comparative morphological and genomic analysis of these FVs. We analyzed the genomes of seven FVs, six of which were newly obtained, to gain a better understanding of their evolutionary history. We show that these FVs share all genomic features of the Naldaviricetes while encoding five specific core genes that distinguish them from their closest relatives, the Hytrosaviruses. By mining public databases, we show that FVs preferentially infect Hymenoptera with parasitoid lifestyle and that these viruses have been repeatedly integrated into the genome of many insects, particularly Hymenoptera parasitoids, overall suggesting a long-standing specialization of these viruses to parasitic wasps. Finally, we propose a taxonomical revision of the class Naldaviricetes in which FVs related to the Leptopilina boulardi FV constitute a fifth family. We propose to name this new family, Filamentoviridae.

19.
PLoS Pathog ; 7(12): e1002422, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22174682

RESUMEN

Autophagy is a conserved degradative pathway used as a host defense mechanism against intracellular pathogens. However, several viruses can evade or subvert autophagy to insure their own replication. Nevertheless, the molecular details of viral interaction with autophagy remain largely unknown. We have determined the ability of 83 proteins of several families of RNA viruses (Paramyxoviridae, Flaviviridae, Orthomyxoviridae, Retroviridae and Togaviridae), to interact with 44 human autophagy-associated proteins using yeast two-hybrid and bioinformatic analysis. We found that the autophagy network is highly targeted by RNA viruses. Although central to autophagy, targeted proteins have also a high number of connections with proteins of other cellular functions. Interestingly, immunity-associated GTPase family M (IRGM), the most targeted protein, was found to interact with the autophagy-associated proteins ATG5, ATG10, MAP1CL3C and SH3GLB1. Strikingly, reduction of IRGM expression using small interfering RNA impairs both Measles virus (MeV), Hepatitis C virus (HCV) and human immunodeficiency virus-1 (HIV-1)-induced autophagy and viral particle production. Moreover we found that the expression of IRGM-interacting MeV-C, HCV-NS3 or HIV-NEF proteins per se is sufficient to induce autophagy, through an IRGM dependent pathway. Our work reveals an unexpected role of IRGM in virus-induced autophagy and suggests that several different families of RNA viruses may use common strategies to manipulate autophagy to improve viral infectivity.


Asunto(s)
Autofagia/fisiología , Proteínas de Unión al GTP/metabolismo , Infecciones por Virus ARN/metabolismo , Infecciones por Virus ARN/transmisión , Virus ARN/metabolismo , Secuencia de Bases , Western Blotting , Biología Computacional , Proteínas de Unión al GTP/genética , Células HeLa , Humanos , Microscopía Confocal , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Infecciones por Virus ARN/genética , Virus ARN/genética , ARN Interferente Pequeño , Transfección , Técnicas del Sistema de Dos Híbridos , Proteínas Virales/metabolismo
20.
Retrovirology ; 9: 26, 2012 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-22458338

RESUMEN

BACKGROUND: Human T-cell leukemia virus type 1 (HTLV-1) and type 2 both target T lymphocytes, yet induce radically different phenotypic outcomes. HTLV-1 is a causative agent of Adult T-cell leukemia (ATL), whereas HTLV-2, highly similar to HTLV-1, causes no known overt disease. HTLV gene products are engaged in a dynamic struggle of activating and antagonistic interactions with host cells. Investigations focused on one or a few genes have identified several human factors interacting with HTLV viral proteins. Most of the available interaction data concern the highly investigated HTLV-1 Tax protein. Identifying shared and distinct host-pathogen protein interaction profiles for these two viruses would enlighten how they exploit distinctive or common strategies to subvert cellular pathways toward disease progression. RESULTS: We employ a scalable methodology for the systematic mapping and comparison of pathogen-host protein interactions that includes stringent yeast two-hybrid screening and systematic retest, as well as two independent validations through an additional protein interaction detection method and a functional transactivation assay. The final data set contained 166 interactions between 10 viral proteins and 122 human proteins. Among the 166 interactions identified, 87 and 79 involved HTLV-1 and HTLV-2 -encoded proteins, respectively. Targets for HTLV-1 and HTLV-2 proteins implicate a diverse set of cellular processes including the ubiquitin-proteasome system, the apoptosis, different cancer pathways and the Notch signaling pathway. CONCLUSIONS: This study constitutes a first pass, with homogeneous data, at comparative analysis of host targets for HTLV-1 and -2 retroviruses, complements currently existing data for formulation of systems biology models of retroviral induced diseases and presents new insights on biological pathways involved in retroviral infection.


Asunto(s)
Interacciones Huésped-Patógeno , Virus Linfotrópico T Tipo 1 Humano/inmunología , Virus Linfotrópico T Tipo 1 Humano/patogenicidad , Virus Linfotrópico T Tipo 2 Humano/inmunología , Virus Linfotrópico T Tipo 2 Humano/patogenicidad , Linfocitos T/inmunología , Linfocitos T/virología , Humanos , Biología de Sistemas/métodos , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA