Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Genome Res ; 32(2): 280-296, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34930799

RESUMEN

Gene expression is regulated through complex molecular interactions, involving cis-acting elements that can be situated far away from their target genes. Data on long-range contacts between promoters and regulatory elements are rapidly accumulating. However, it remains unclear how these regulatory relationships evolve and how they contribute to the establishment of robust gene expression profiles. Here, we address these questions by comparing genome-wide maps of promoter-centered chromatin contacts in mouse and human. We show that there is significant evolutionary conservation of cis-regulatory landscapes, indicating that selective pressures act to preserve not only regulatory element sequences but also their chromatin contacts with target genes. The extent of evolutionary conservation is remarkable for long-range promoter-enhancer contacts, illustrating how the structure of regulatory landscapes constrains large-scale genome evolution. We show that the evolution of cis-regulatory landscapes, measured in terms of distal element sequences, synteny, or contacts with target genes, is significantly associated with gene expression evolution.


Asunto(s)
Cromatina , Elementos de Facilitación Genéticos , Animales , Cromatina/genética , Evolución Molecular , Expresión Génica , Ratones , Regiones Promotoras Genéticas , Sintenía
2.
Genes Dev ; 30(10): 1172-86, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-27198226

RESUMEN

During vertebrate limb development, Hoxd genes are regulated following a bimodal strategy involving two topologically associating domains (TADs) located on either side of the gene cluster. These regulatory landscapes alternatively control different subsets of Hoxd targets, first into the arm and subsequently into the digits. We studied the transition between these two global regulations, a switch that correlates with the positioning of the wrist, which articulates these two main limb segments. We show that the HOX13 proteins themselves help switch off the telomeric TAD, likely through a global repressive mechanism. At the same time, they directly interact with distal enhancers to sustain the activity of the centromeric TAD, thus explaining both the sequential and exclusive operating processes of these two regulatory domains. We propose a model in which the activation of Hox13 gene expression in distal limb cells both interrupts the proximal Hox gene regulation and re-enforces the distal regulation. In the absence of HOX13 proteins, a proximal limb structure grows without any sign of wrist articulation, likely related to an ancestral fish-like condition.


Asunto(s)
Tipificación del Cuerpo/genética , Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Genes Homeobox/genética , Proteínas de Homeodominio/metabolismo , Dominios Proteicos/genética , Animales , Embrión de Pollo , Elementos de Facilitación Genéticos/genética , Proteínas de Homeodominio/genética , Deformidades Congénitas de las Extremidades/genética , Ratones , Ratones Transgénicos , Mutación , Unión Proteica/genética
3.
Mol Biol Evol ; 37(1): 240-259, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31539080

RESUMEN

The functionality of long noncoding RNAs (lncRNAs) is disputed. In general, lncRNAs are under weak selective pressures, suggesting that the majority of lncRNAs may be nonfunctional. However, although some surveys showed negligible phenotypic effects upon lncRNA perturbation, key biological roles were demonstrated for individual lncRNAs. Most lncRNAs with proven functions were implicated in gene expression regulation, in pathways related to cellular pluripotency, differentiation, and organ morphogenesis, suggesting that functional lncRNAs may be more abundant in embryonic development, rather than in adult organs. To test this hypothesis, we perform a multidimensional comparative transcriptomics analysis, across five developmental time points (two embryonic stages, newborn, adult, and aged individuals), four organs (brain, kidney, liver, and testes), and three species (mouse, rat, and chicken). We find that, overwhelmingly, lncRNAs are preferentially expressed in adult and aged testes, consistent with the presence of permissive transcription during spermatogenesis. LncRNAs are often differentially expressed among developmental stages and are less abundant in embryos and newborns compared with adult individuals, in agreement with a requirement for tighter expression control and less tolerance for noisy transcription early in development. For differentially expressed lncRNAs, we find that the patterns of expression variation among developmental stages are generally conserved between mouse and rat. Moreover, lncRNAs expressed above noise levels in somatic organs and during development show higher evolutionary conservation, in particular, at their promoter regions. Thus, we show that functionally constrained lncRNA loci are enriched in developing organs, and we suggest that many of these loci may function in an RNA-independent manner.


Asunto(s)
Embrión de Mamíferos/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Secuencia de Bases , Secuencia Conservada , Expresión Génica , Estadios del Ciclo de Vida , Masculino , Ratones , Ratas , Selección Genética , Homología de Secuencia , Transcriptoma
4.
Nat Rev Genet ; 15(11): 734-48, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25297727

RESUMEN

Gene expression changes may underlie much of phenotypic evolution. The development of high-throughput RNA sequencing protocols has opened the door to unprecedented large-scale and cross-species transcriptome comparisons by allowing accurate and sensitive assessments of transcript sequences and expression levels. Here, we review the initial wave of the new generation of comparative transcriptomic studies in mammals and vertebrate outgroup species in the context of earlier work. Together with various large-scale genomic and epigenomic data, these studies have unveiled commonalities and differences in the dynamics of gene expression evolution for various types of coding and non-coding genes across mammalian lineages, organs, developmental stages, chromosomes and sexes. They have also provided intriguing new clues to the regulatory basis and phenotypic implications of evolutionary gene expression changes.


Asunto(s)
Epigenómica , Evolución Molecular , Genómica , Transcriptoma/genética , Vertebrados/genética , Animales , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mamíferos , Fenotipo , ARN/química , ARN/genética , ARN no Traducido/química , ARN no Traducido/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
5.
Nature ; 505(7485): 635-40, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24463510

RESUMEN

Only a very small fraction of long noncoding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into their functionality, but the absence of lncRNA annotations in non-model organisms has precluded comparative analyses. Here we present a large-scale evolutionary study of lncRNA repertoires and expression patterns, in 11 tetrapod species. We identify approximately 11,000 primate-specific lncRNAs and 2,500 highly conserved lncRNAs, including approximately 400 genes that are likely to have originated more than 300 million years ago. We find that lncRNAs, in particular ancient ones, are in general actively regulated and may function predominantly in embryonic development. Most lncRNAs evolve rapidly in terms of sequence and expression levels, but tissue specificities are often conserved. We compared expression patterns of homologous lncRNA and protein-coding families across tetrapods to reconstruct an evolutionarily conserved co-expression network. This network suggests potential functions for lncRNAs in fundamental processes such as spermatogenesis and synaptic transmission, but also in more specific mechanisms such as placenta development through microRNA production.


Asunto(s)
Evolución Molecular , ARN Largo no Codificante/genética , Animales , Anuros/genética , Pollos/genética , Secuencia Conservada/genética , Regulación del Desarrollo de la Expresión Génica/genética , Genómica , Humanos , Ratones , MicroARNs/genética , Familia de Multigenes , Primates/genética , Proteínas/genética , Precursores del ARN/genética , Transcriptoma
6.
Proc Natl Acad Sci U S A ; 114(44): E9290-E9299, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29042517

RESUMEN

During embryonic development, Hox genes participate in the building of a functional digestive system in metazoans, and genetic conditions involving these genes lead to important, sometimes lethal, growth retardation. Recently, this phenotype was obtained after deletion of Haglr, the Hoxd antisense growth-associated long noncoding RNA (lncRNA) located between Hoxd1 and Hoxd3 In this study, we have analyzed the function of Hoxd genes in delayed growth trajectories by looking at several nested targeted deficiencies of the mouse HoxD cluster. Mutant pups were severely stunted during the suckling period, but many recovered after weaning. After comparing seven distinct HoxD alleles, including CRISPR/Cas9 deletions involving Haglr, we identified Hoxd3 as the critical component for the gut to maintain milk-digestive competence. This essential function could be abrogated by the dominant-negative effect of HOXD10 as shown by a genetic rescue approach, thus further illustrating the importance of posterior prevalence in Hox gene function. A role for the lncRNA Haglr in the control of postnatal growth could not be corroborated.


Asunto(s)
Genes Homeobox/genética , ARN Largo no Codificante/genética , Alelos , Animales , Sistemas CRISPR-Cas/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Masculino , Ratones , Fenotipo , Factores de Transcripción/genética
7.
PLoS Genet ; 12(12): e1006232, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27977683

RESUMEN

Despite the crucial importance of Hox genes functions during animal development, the mechanisms that control their transcription in time and space are not yet fully understood. In this context, it was proposed that Hotair, a lncRNA transcribed from within the HoxC cluster regulates Hoxd gene expression in trans, through the targeting of Polycomb and consecutive transcriptional repression. This activity was recently supported by the skeletal phenotype of mice lacking Hotair function. However, other loss of function alleles at this locus did not elicit the same effects. Here, we re-analyze the molecular and phenotypic consequences of deleting the Hotair locus in vivo. In contrast with previous findings, we show that deleting Hotair has no detectable effect on Hoxd genes expression in vivo. In addition, we were unable to observe any significant morphological alteration in mice lacking the Hotair transcript. However, we find a subtle impact of deleting the Hotair locus upon the expression of the neighboring Hoxc11 and Hoxc12 genes in cis. Our results do not support any substantial role for Hotair during mammalian development in vivo. Instead, they argue in favor of a DNA-dependent effect of the Hotair deletion upon the transcriptional landscape in cis.


Asunto(s)
Desarrollo Embrionario/genética , Proteínas de Homeodominio/genética , ARN Largo no Codificante/genética , Animales , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Humanos , Ratones , Ratones Noqueados , Proteínas del Grupo Polycomb/genética
8.
Proc Natl Acad Sci U S A ; 113(48): E7720-E7729, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27856734

RESUMEN

Vertebrate Hox genes encode transcription factors operating during the development of multiple organs and structures. However, the evolutionary mechanism underlying this remarkable pleiotropy remains to be fully understood. Here, we show that Hoxd8 and Hoxd9, two genes of the HoxD complex, are transcribed during mammary bud (MB) development. However, unlike in other developmental contexts, their coexpression does not rely on the same regulatory mechanism. Hoxd8 is regulated by the combined activity of closely located sequences and the most distant telomeric gene desert. On the other hand, Hoxd9 is controlled by an enhancer-rich region that is also located within the telomeric gene desert but has no impact on Hoxd8 transcription, thus constituting an exception to the global regulatory logic systematically observed at this locus. The latter DNA region is also involved in Hoxd gene regulation in other contexts and strongly interacts with Hoxd9 in all tissues analyzed thus far, indicating that its regulatory activity was already operational before the appearance of mammary glands. Within this DNA region and neighboring a strong limb enhancer, we identified a short sequence conserved in therian mammals and capable of enhancer activity in the MBs. We propose that Hoxd gene regulation in embryonic MBs evolved by hijacking a preexisting regulatory landscape that was already at work before the emergence of mammals in structures such as the limbs or the intestinal tract.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Animales , Elementos de Facilitación Genéticos , Genes Homeobox , Proteínas de Homeodominio/metabolismo , Glándulas Mamarias Animales/embriología , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Análisis de Secuencia de ARN , Transcripción Genética
9.
Nature ; 478(7369): 343-8, 2011 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-22012392

RESUMEN

Changes in gene expression are thought to underlie many of the phenotypic differences between species. However, large-scale analyses of gene expression evolution were until recently prevented by technological limitations. Here we report the sequencing of polyadenylated RNA from six organs across ten species that represent all major mammalian lineages (placentals, marsupials and monotremes) and birds (the evolutionary outgroup), with the goal of understanding the dynamics of mammalian transcriptome evolution. We show that the rate of gene expression evolution varies among organs, lineages and chromosomes, owing to differences in selective pressures: transcriptome change was slow in nervous tissues and rapid in testes, slower in rodents than in apes and monotremes, and rapid for the X chromosome right after its formation. Although gene expression evolution in mammals was strongly shaped by purifying selection, we identify numerous potentially selectively driven expression switches, which occurred at different rates across lineages and tissues and which probably contributed to the specific organ biology of various mammals.


Asunto(s)
Evolución Molecular , Perfilación de la Expresión Génica , ARN Mensajero/genética , Animales , Humanos , Filogenia , Análisis de Componente Principal , Cromosoma X/genética
10.
PLoS Biol ; 10(5): e1001328, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22615540

RESUMEN

As a result of sex chromosome differentiation from ancestral autosomes, male mammalian cells only contain one X chromosome. It has long been hypothesized that X-linked gene expression levels have become doubled in males to restore the original transcriptional output, and that the resulting X overexpression in females then drove the evolution of X inactivation (XCI). However, this model has never been directly tested and patterns and mechanisms of dosage compensation across different mammals and birds generally remain little understood. Here we trace the evolution of dosage compensation using extensive transcriptome data from males and females representing all major mammalian lineages and birds. Our analyses suggest that the X has become globally upregulated in marsupials, whereas we do not detect a global upregulation of this chromosome in placental mammals. However, we find that a subset of autosomal genes interacting with X-linked genes have become downregulated in placentals upon the emergence of sex chromosomes. Thus, different driving forces may underlie the evolution of XCI and the highly efficient equilibration of X expression levels between the sexes observed for both of these lineages. In the egg-laying monotremes and birds, which have partially homologous sex chromosome systems, partial upregulation of the X (Z in birds) evolved but is largely restricted to the heterogametic sex, which provides an explanation for the partially sex-biased X (Z) expression and lack of global inactivation mechanisms in these lineages. Our findings suggest that dosage reductions imposed by sex chromosome differentiation events in amniotes were resolved in strikingly different ways.


Asunto(s)
Aves/genética , Compensación de Dosificación (Genética) , Evolución Molecular , Mamíferos/genética , Animales , Secuencia de Bases , Mapeo Cromosómico , Simulación por Computador , Femenino , Duplicación de Gen , Regulación de la Expresión Génica , Genes Ligados a X , Masculino , Análisis de Secuencia de ARN , Cromosomas Sexuales , Testículo/citología , Transcriptoma
11.
Nature ; 456(7224): 942-5, 2008 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-19037246

RESUMEN

Fossils of organisms dating from the origin and diversification of cellular life are scant and difficult to interpret, for this reason alternative means to investigate the ecology of the last universal common ancestor (LUCA) and of the ancestors of the three domains of life are of great scientific value. It was recently recognized that the effects of temperature on ancestral organisms left 'genetic footprints' that could be uncovered in extant genomes. Accordingly, analyses of resurrected proteins predicted that the bacterial ancestor was thermophilic and that Bacteria subsequently adapted to lower temperatures. As the archaeal ancestor is also thought to have been thermophilic, the LUCA was parsimoniously inferred as thermophilic too. However, an analysis of ribosomal RNAs supported the hypothesis of a non-hyperthermophilic LUCA. Here we show that both rRNA and protein sequences analysed with advanced, realistic models of molecular evolution provide independent support for two environmental-temperature-related phases during the evolutionary history of the tree of life. In the first period, thermotolerance increased from a mesophilic LUCA to thermophilic ancestors of Bacteria and of Archaea-Eukaryota; in the second period, it decreased. Therefore, the two lineages descending from the LUCA and leading to the ancestors of Bacteria and Archaea-Eukaryota convergently adapted to high temperatures, possibly in response to a climate change of the early Earth, and/or aided by the transition from an RNA genome in the LUCA to organisms with more thermostable DNA genomes. This analysis unifies apparently contradictory results into a coherent depiction of the evolution of an ecological trait over the entire tree of life.


Asunto(s)
Adaptación Fisiológica/fisiología , Archaea/fisiología , Calor , Adaptación Fisiológica/genética , Archaea/genética , Evolución Molecular , Genes de ARNr/genética , Filogenia
12.
NAR Genom Bioinform ; 6(2): lqae064, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867915

RESUMEN

We present GTDrift, a comprehensive data resource that enables explorations of genomic and transcriptomic characteristics alongside proxies of the intensity of genetic drift in individual species. This resource encompasses data for 1506 eukaryotic species, including 1413 animals and 93 green plants, and is organized in three components. The first two components contain approximations of the effective population size, which serve as indicators of the extent of random genetic drift within each species. In the first component, we meticulously investigated public databases to assemble data on life history traits such as longevity, adult body length and body mass for a set of 979 species. The second component includes estimations of the ratio between the rate of non-synonymous substitutions and the rate of synonymous substitutions (dN/dS) in protein-coding sequences for 1324 species. This ratio provides an estimate of the efficiency of natural selection in purging deleterious substitutions. Additionally, we present polymorphism-derived N e estimates for 66 species. The third component encompasses various genomic and transcriptomic characteristics. With this component, we aim to facilitate comparative transcriptomics analyses across species, by providing easy-to-use processed data for more than 16 000 RNA-seq samples across 491 species. These data include intron-centered alternative splicing frequencies, gene expression levels and sequencing depth statistics for each species, obtained with a homogeneous analysis protocol. To enable cross-species comparisons, we provide orthology predictions for conserved single-copy genes based on BUSCO gene sets. To illustrate the possible uses of this database, we identify the most frequently used introns for each gene and we assess how the sequencing depth available for each species affects our power to identify major and minor splice variants.

13.
Elife ; 132024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470242

RESUMEN

Most eukaryotic genes undergo alternative splicing (AS), but the overall functional significance of this process remains a controversial issue. It has been noticed that the complexity of organisms (assayed by the number of distinct cell types) correlates positively with their genome-wide AS rate. This has been interpreted as evidence that AS plays an important role in adaptive evolution by increasing the functional repertoires of genomes. However, this observation also fits with a totally opposite interpretation: given that 'complex' organisms tend to have small effective population sizes (Ne), they are expected to be more affected by genetic drift, and hence more prone to accumulate deleterious mutations that decrease splicing accuracy. Thus, according to this 'drift barrier' theory, the elevated AS rate in complex organisms might simply result from a higher splicing error rate. To test this hypothesis, we analyzed 3496 transcriptome sequencing samples to quantify AS in 53 metazoan species spanning a wide range of Ne values. Our results show a negative correlation between Ne proxies and the genome-wide AS rates among species, consistent with the drift barrier hypothesis. This pattern is dominated by low abundance isoforms, which represent the vast majority of the splice variant repertoire. We show that these low abundance isoforms are depleted in functional AS events, and most likely correspond to errors. Conversely, the AS rate of abundant isoforms, which are relatively enriched in functional AS events, tends to be lower in more complex species. All these observations are consistent with the hypothesis that variation in AS rates across metazoans reflects the limits set by drift on the capacity of selection to prevent gene expression errors.


Asunto(s)
Empalme Alternativo , Empalme del ARN , Animales , Flujo Genético , Isoformas de Proteínas , ARN Mensajero/genética
14.
Trends Genet ; 25(12): 519-22, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19850368

RESUMEN

What determines the recombination rate of a gene? Following the observation that, in humans, imprinted genes have unusually high recombination levels, we ask whether increased recombination is seen for other monoallelically expressed genes and, more generally, how transcriptional properties relate to recombination. We find that monoallelically expressed genes do have high crossover rates and discover a striking negative correlation between within-gene crossover rate and expression breadth. We hypothesise that these findings are possibly symptomatic of a more general, adverse relationship between recombination and transcription in the human genome.


Asunto(s)
Expresión Génica , Genoma Humano , Recombinación Genética , Transcripción Genética , Impresión Genómica , Humanos , Especificidad de Órganos
15.
Hum Mutat ; 32(2): 198-206, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21120948

RESUMEN

Although mutations that are detrimental to the fitness of organisms are expected to be rapidly purged from populations by natural selection, some disease-causing mutations are present at high frequencies in human populations. Several nonexclusive hypotheses have been proposed to account for this apparent paradox (high new mutation rate, genetic drift, overdominance, or recent changes in selective pressure). However, the factors ultimately responsible for the presence at high frequency of disease-causing mutations are still contentious. Here we establish the existence of an additional process that contributes to the spreading of deleterious mutations: GC-biased gene conversion (gBGC), a process associated with recombination that tends to favor the transmission of GC-alleles over AT-alleles. We show that the spectrum of amino acid-altering polymorphisms in human populations exhibits the footprints of gBGC. This pattern cannot be explained in terms of selection and is evident with all nonsynonymous mutations, including those predicted to be detrimental to protein structure and function, and those implicated in human genetic disease. We present simulations to illustrate the conditions under which gBGC can extend the persistence time of deleterious mutations in a finite population. These results indicate that gBGC meiotic drive contributes to the spreading of deleterious mutations in human populations.


Asunto(s)
Composición de Base , Predisposición Genética a la Enfermedad , Meiosis , Recombinación Genética , Enfermedad/genética , Frecuencia de los Genes , Humanos , Mutación , Polimorfismo de Nucleótido Simple
16.
Mol Biol Evol ; 26(4): 729-41, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19126867

RESUMEN

Assessment of the impact of DNA replication on genome architecture in Eukaryotes has long been hampered by the scarcity of experimental data. Recent work, relying on computational predictions of origins of replication, suggested that replication might be a major determinant of gene organization in human (Huvet et al. 2007. Human gene organization driven by the coordination of replication and transcription. Genome Res. 17:1278-1285). Here, we address this question by analyzing the first large-scale data set of experimentally determined origins of replication in human: 283 origins identified in HeLa cells, in 1% of the genome covered by ENCODE regions (Cadoret et al. 2008. Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc Natl Acad Sci USA. 105:15837-15842). We show that origins of replication are not randomly distributed as they display significant overlap with promoter regions and CpG islands. The hypothesis of a selective pressure to avoid frontal collisions between replication and transcription polymerases is not supported by experimental data as we find no evidence for gene orientation bias in the proximity of origins of replication. The lack of a significant orientation bias remains manifest even when considering only genes expressed at a high rate, or in a wide number of tissues, and is not affected by the regional replication timing. Gene expression breadth does not appear to be correlated with the distance from the origins of replication. We conclude that the impact of DNA replication on human genome organization is considerably weaker than previously proposed.


Asunto(s)
Replicación del ADN , Genoma Humano , Humanos , Regiones Promotoras Genéticas , Origen de Réplica , Transcripción Genética
17.
Nat Ecol Evol ; 8(6): 1068-1069, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38622361
18.
EMBO Mol Med ; 9(6): 816-834, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28360091

RESUMEN

Hepatitis C virus (HCV) is widely used to investigate host-virus interactions. Cellular responses to HCV infection have been extensively studied in vitro However, in human liver, interferon (IFN)-stimulated gene expression can mask direct transcriptional responses to infection. To better characterize the direct effects of HCV infection in vivo, we analyze the transcriptomes of HCV-infected patients lacking an activated endogenous IFN system. We show that expression changes observed in these patients predominantly reflect immune cell infiltrates rather than cell-intrinsic pathways. We also investigate the transcriptomes of patients with endogenous IFN activation, which paradoxically cannot eradicate viral infection. We find that most IFN-stimulated genes are induced by both recombinant IFN therapy and the endogenous IFN system, but with lower induction levels in the latter, indicating that the innate immune response in chronic hepatitis C is too weak to clear the virus. We show that coding and non-coding transcripts have different expression dynamics following IFN treatment. Several microRNA primary transcripts, including that of miR-122, are significantly down-regulated in response to IFN treatment, suggesting a new mechanism for IFN-induced expression fine-tuning.


Asunto(s)
Antivirales/administración & dosificación , Perfilación de la Expresión Génica , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/patología , Factores Inmunológicos/análisis , Interferón-alfa/administración & dosificación , Hígado/patología , Biopsia , Hepatitis C Crónica/inmunología , Humanos , Factores Inmunológicos/administración & dosificación , Factores Inmunológicos/genética , MicroARNs/análisis , MicroARNs/genética , Patología Molecular
19.
Genome Biol ; 18(1): 208, 2017 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-29084568

RESUMEN

BACKGROUND: Most eukaryotic genes are subject to alternative splicing (AS), which may contribute to the production of protein variants or to the regulation of gene expression via nonsense-mediated messenger RNA (mRNA) decay (NMD). However, a fraction of splice variants might correspond to spurious transcripts and the question of the relative proportion of splicing errors to functional splice variants remains highly debated. RESULTS: We propose a test to quantify the fraction of AS events corresponding to errors. This test is based on the fact that the fitness cost of splicing errors increases with the number of introns in a gene and with expression level. We analyzed the transcriptome of the intron-rich eukaryote Paramecium tetraurelia. We show that in both normal and in NMD-deficient cells, AS rates strongly decrease with increasing expression level and with increasing number of introns. This relationship is observed for AS events that are detectable by NMD as well as for those that are not, which invalidates the hypothesis of a link with the regulation of gene expression. Our results show that in genes with a median expression level, 92-98% of observed splice variants correspond to errors. We observed the same patterns in human transcriptomes and we further show that AS rates correlate with the fitness cost of splicing errors. CONCLUSIONS: These observations indicate that genes under weaker selective pressure accumulate more maladaptive substitutions and are more prone to splicing errors. Thus, to a large extent, patterns of gene expression variants simply reflect the balance between selection, mutation, and drift.


Asunto(s)
Empalme Alternativo , Aptitud Genética , Expresión Génica , Humanos , Degradación de ARNm Mediada por Codón sin Sentido , Paramecium/genética , Paramecium/metabolismo , Isoformas de ARN/metabolismo , Transcriptoma
20.
Gene ; 385: 28-40, 2006 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-16987616

RESUMEN

This paper reports the existence of a significant negative correlation between GC12 and GC3 in the recently sequenced genome of Leishmania major. This result contradicts the previous evidence that the compositional correlations between codon positions are universal. Moreover, it challenges the interpretation of the GC12 vs. GC3 linear regression slope as the relative neutrality of GC12, within the framework of the directional mutation pressure theory [Sueoka, N., 1988. Directional mutational pressure and neutral molecular evolution. P Natl Acad Sci USA 85, 2653-2657.]. The analysis of the codon usage pattern for L. major shows that codon choice is most likely influenced by both mutation pressure and translational selection. Dinucleotide frequencies were also analysed; our results do not support the existence of an unusual neighbour-dependent mutation bias in this genome. We developed two evolutionary models that could explain the origin of the negative GC12/GC3 correlation. The first model is based on the effect of translational selection on the GC3 the second one is based on a potential mutation bias combined with purifying selection at the amino-acid level. Both models predict a negative GC12/GC3 correlation at the equilibrium. The potential implications of these results for this aspect of the directional mutation pressure theory are discussed. We conclude that the particular case of L. major should lead to a careful reevaluation of several hypotheses of this theory. The origin of the negative GC12/GC3 correlation remains for now an open question.


Asunto(s)
Genoma de Protozoos , Leishmania major/genética , Modelos Genéticos , Mutación , Animales , Codón/genética , ADN Protozoario/química , ADN Protozoario/genética , Secuencia Rica en GC , Leishmania major/clasificación , Proteínas Protozoarias/genética , Especificidad de la Especie , Trypanosomatina/clasificación , Trypanosomatina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA