RESUMEN
Respiratory-related diseases are a leading cause of death in rheumatoid arthritis (RA) and are disproportionately higher in men, which may be attributable to environmental risk factors. Animal studies have demonstrated potentiated autoimmunity, arthritis, and profibrotic/inflammatory lung disease with a combination of airborne exposures and collagen-induced arthritis (CIA). This study aimed to determine whether hormone-dependent differences explained these observations. Arthritis-prone male intact and castrated DBA/1J mice received intranasal inhalation of lipopolysaccharide (LPS) daily for 5 wk and CIA induction. Arthritis scores and serum pentraxin-2 levels were increased in castrated versus intact mice. In contrast, airway cell influx, lung tissue infiltrates, and lung levels of proinflammatory and profibrotic markers (C5a, IL-33, and matrix metalloproteinases) were reduced in castrated versus intact mice. CIA + LPS-induced lung histopathology changes and the expression of lung autoantigens including malondialdehyde acetaldehyde (MAA)- and citrulline (CIT)-modified proteins and vimentin were reduced in castrated animals. There were no differences in serum anti-MAA or anti-CIT protein antibody (ACPA) levels or serum pentraxin levels between groups. Testosterone replacement led to a reversal of several lung inflammatory/profibrotic endpoints noted earlier in castrated male CIA + LPS-treated mice with testosterone supplementation promoting neutrophil influx, MAA expression, and TNF-α, IL-6, and MMP-9. These findings imply that testosterone contributes to lung and arthritis inflammatory responses following CIA + LPS coexposure, but not to systemic autoantibody responses. The CIA + LPS model provides a paradigm for investigations focused on the mechanistic underpinnings for epidemiologic and phenotypic sex differences in RA-related lung disease.NEW & NOTEWORTHY Our study shows that testosterone acts as a key immunomodulatory hormone contributing to critical features of rheumatoid arthritis (RA)-associated lung disease in the setting of airborne endotoxin (lipopolysaccharide; LPS) exposures and concomitant arthritis induction in mice. The exaggerated airway inflammation observed following combined exposures in male mice was accompanied by increases in profibrotic mediators, netosis, and increased expression of lung autoantigens, all relevant to the pathogenesis of lung disease in arthritis.
Asunto(s)
Artritis Experimental , Artritis Reumatoide , Enfermedades Pulmonares , Humanos , Masculino , Femenino , Animales , Ratones , Lipopolisacáridos/farmacología , Endotoxinas , Testosterona/farmacología , Ratones Endogámicos DBA , AutoantígenosRESUMEN
OBJECTIVES: Though interstitial lung disease (ILD) contributes to excess morbidity and mortality in rheumatoid arthritis (RA), RA-ILD pathogenesis remains incompletely defined. As intermediate, non-classical and suppressed CD14+ monocytes are expanded in RA-ILD, this study sought to characterize gene expression profiles of circulating monocytes in RA-ILD. METHODS: Peripheral blood mononuclear cells were collected from patients with RA without lung disease (N = 5), RA-ILD (N = 5), idiopathic pulmonary fibrosis (IPF; N = 5), and controls without lung and autoimmune disease (N = 4). RNA was extracted from CD14+ isolated monocytes and subjected to transcriptional analysis of 1365 genes. Gene enrichment and pathway analyses were performed. RESULTS: Unsupervised clustering grouped patients with RA-ILD together with IPF for myeloid innate genes. For fibrosis genes, patients with RA-ILD clustered independent of comparator groups. There were 103, 66, and 64 upregulated and 66, 14, and 25 downregulated genes for RA-ILD, RA, and IPF, vs controls, respectively. For RA-ILD, there was increased expression of genes involved in regulating inflammation and fibrosis (SOCS3, CECAM1, LTB4R2, CLEC7A, IRF7, PHYKPL, GBP5, RAPGEF), epigenetic modification (KDM5D, KMT2D, OGT), and macrophage activation. Top canonical pathways included macrophage differentiation-activation, IL-12, neuroinflammatory, glucocorticoid receptor, and IL-27 signalling. CONCLUSIONS: Circulating monocytes in RA-ILD patients demonstrate unique gene expression profiles with innate immune gene features more aligned with IPF as opposed to RA in the absence of clinical lung disease with fibrosis gene expression that was distinct from RA and IPF. These studies are important for understanding disease pathogenesis and may provide information for future therapeutic targets in RA-ILD.
RESUMEN
BACKGROUND: Environmental/occupational exposures cause significant lung diseases. Agricultural organic dust extracts (ODE) and bacterial component lipopolysaccharide (LPS) induce recruited, transitioning murine lung monocytes/macrophages, yet their cellular role remains unclear. METHODS: CCR2 RFP+ mice were intratracheally instilled with high concentration ODE (25%), LPS (10 µg), or gram-positive peptidoglycan (PGN, 100 µg) for monocyte/macrophage cell-trafficking studies. CCR2 knockout (KO) mice and administration of intravenous clodronate liposomes strategies were employed to reduce circulating monocytes available for lung recruitment following LPS exposure. Lung tissues and bronchoalveolar lavage fluid (BALF) were collected. Pro-inflammatory and/or pro-fibrotic cytokines, chemokines, and lung extracellular matrix mediators were quantitated by ELISA. Infiltrating lung cells including monocyte/macrophage subpopulations, neutrophils, and lymphocytes were characterized by flow cytometry. Lung histopathology, collagen content, vimentin, and post-translational protein citrullination and malondialdehyde acetaldehyde (MAA) modification were quantitated. Parametric statistical tests (one-way ANOVA, Tukey'smultiple comparison) and nonparametric statistical (Kruskal-Wallis, Dunn's multiple comparison) tests were used following Shapiro-Wilk testing for normality. RESULTS: Intratracheal instillation of ODE, LPS, or PGN robustly induced the recruitment of inflammatory CCR2+ CD11cintCD11bhi monocytes/macrophages and both CCR2+ and CCR2- CD11c-CD11bhi monocytes at 48 h. There were also increases in CCR2+ CD4+ and CD8+ T cells and NK cells. Despite reductions in LPS-induced lung infiltrating CD11cintCD11bhi cells (54% reduction), CCR2 knockout (KO) mice were not protected against LPS-induced inflammatory and pro-fibrotic consequences. Instead, compensatory increases in lung neutrophils and CCL2 and CCL7 release occurred. In contrast, the depletion of circulating monocytes through the administration of intravenous clodronate (vs. vehicle) liposomes 24 h prior to LPS exposure reduced LPS-induced infiltrating CD11cintCD11bhi monocyte-macrophage subpopulation by 59% without compensatory changes in other cell populations. Clodronate liposome pre-treatment significantly reduced LPS-induced IL-6 (66% reduction), matrix metalloproteinases (MMP)-3 (36%), MMP-8 (57%), tissue inhibitor of metalloproteinases (61%), fibronectin (38%), collagen content (22%), and vimentin (40%). LPS-induced lung protein citrullination and MAA modification, post-translational modifications implicated in lung disease, were reduced (39% and 48%) with clodronate vs. vehicle liposome. CONCLUSION: Highly concentrated environmental/occupational exposures induced the recruitment of CCR2+ and CCR2- transitioning monocyte-macrophage and monocyte subpopulations and targeting peripheral monocytes may reduce the adverse lung consequences resulting from exposures to LPS-enriched inhalants.
Asunto(s)
Enfermedades Pulmonares , Monocitos , Ratones , Animales , Monocitos/metabolismo , Liposomas/metabolismo , Vimentina/metabolismo , Lipopolisacáridos/farmacología , Ácido Clodrónico/farmacología , Ácido Clodrónico/metabolismo , Linfocitos T CD8-positivos , Pulmón , Macrófagos/metabolismo , Enfermedades Pulmonares/metabolismo , Exposición a Riesgos Ambientales , Colágeno/metabolismo , Ratones Endogámicos C57BLRESUMEN
Immunogenetic as well as environmental and occupational exposures have been linked to the development of rheumatoid arthritis (RA), RA-associated lung disease, and other primary lung disorders. Importantly, various inhalants can trigger post-translational protein modifications, resulting in lung autoantigen expression capable of stimulating pro-inflammatory and/or pro-fibrotic immune responses. To further elucidate gene-environment interactions contributing to pathologic lung inflammation, we exploited an established model of organic dust extract (ODE) exposure with and without collagen-induced arthritis (CIA) in C57BL/6 wild type (WT) versus HLA-DR4 transgenic mice. ODE-induced airway infiltration driven by neutrophils was significantly increased in DR4 versus WT mice, with corresponding increases in bronchoalveolar lavage fluid (BALF) levels of TNF-âº, IL-6, and IL-33. Lung histopathology demonstrated increased number of ectopic lymphoid aggregates comprised of T and B cells following ODE exposure in DR4 mice. ODE also induced citrullination, malondialdehyde acetaldehyde (MAA) modification, and vimentin expression that co-localized with MAA and was enhanced in DR4 mice. Serum and BALF anti-MAA antibodies were strikingly increased in ODE-treated DR4 mice. Coupling ODE exposure with Type II collagen immunization (CIA) resulted in similarly augmented pro-inflammatory lung profiles in DR4 mice (relative to WT mice) that was accompanied by a profound increase in infiltrating lung CD4+ and CD8+ T cells as well as CD19+CD11b+ autoimmune B cells. Neither modeling strategy induced significant arthritis. These findings support a model in which environmental insults trigger enhanced post-translational protein modification and lung inflammation sharing immunopathological features with RA-associated lung disease in the selected immunogenetic background of HLA-DR4 mice.
Asunto(s)
Artritis Reumatoide , Enfermedades Pulmonares , Neumoconiosis , Neumonía , Animales , Autoantígenos , Linfocitos T CD8-positivos/metabolismo , Polvo , Antígeno HLA-DR4/metabolismo , Pulmón/metabolismo , Enfermedades Pulmonares/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neumoconiosis/metabolismo , Neumonía/metabolismoRESUMEN
BACKGROUND: The club cell secretory protein (CC16) has anti-inflammatory and antioxidant effects, and low CC16 serum levels have been associated with both risk and progression of COPD, yet the interaction between smoking and CC16 on lung function outcomes remains unknown. METHODS: Utilizing cross-sectional data on United States veterans, CC16 serum concentrations were measured by ELISA and log transformed for analyses. Spirometry was conducted and COPD status was defined by post-bronchodilator FEV1/FVC ratio < 0.7. Smoking measures were self-reported on questionnaire. Multivariable logistic and linear regression were employed to examine associations between CC16 levels and COPD, and lung function with adjustment for covariates. Unadjusted Pearson correlations described relationships between CC16 level and lung function measures, pack-years smoked, and years since smoking cessation. RESULTS: The study population (N = 351) was mostly male, white, with an average age over 60 years. An interaction between CC16 and smoking status on FEV1/FVC ratio was demonstrated among subjects with COPD (N = 245, p = 0.01). There was a positive correlation among former smokers and negative correlation among current or never smokers with COPD. Among former smokers with COPD, CC16 levels were also positively correlated with years since smoking cessation, and inversely related with pack-years smoked. Increasing CC16 levels were associated with lower odds of COPD (ORadj = 0.36, 95% CI 0.22-0.57, Padj < 0.0001). CONCLUSIONS: Smoking status is an important effect modifier of CC16 relationships with lung function. Increasing serum CC16 corresponded to increases in FEV1/FVC ratio in former smokers with COPD versus opposite relationships in current or never smokers. Additional longitudinal studies may be warranted to assess relationship of CC16 with smoking cessation on lung function among subjects with COPD.
Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Uteroglobina , Antiinflamatorios/metabolismo , Antioxidantes/metabolismo , Broncodilatadores/metabolismo , Estudios Transversales , Femenino , Humanos , Pulmón/metabolismo , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Humo , Fumar/efectos adversos , Fumar/epidemiología , Nicotiana , Uteroglobina/metabolismoRESUMEN
Exposure to agricultural bioaerosols can lead to chronic inflammatory lung diseases. Amphiregulin (AREG) can promote the lung repair process but can also lead to fibrotic remodeling. The objective of this study was to determine the role of AREG in altering recovery from environmental dust exposure in a murine in vivo model and in vitro using cultured human and murine lung fibroblasts. C57BL/6 mice were intranasally exposed to swine confinement facility dust extract (DE) or saline daily for 1 wk or allowed to recover for 3-7 days while being treated with an AREG-neutralizing antibody or recombinant AREG. Treatment with the anti-AREG antibody prevented resolution of DE exposure-induced airway influx of total cells, neutrophils, and macrophages and increased levels of TNF-α, IL-6, and CXCL1. Neutrophils and activated macrophages (CD11c+CD11bhi) persisted after recovery in lung tissues of anti-AREG-treated mice. In murine and human lung fibroblasts, DE induced the release of AREG and inflammatory cytokines. Fibroblast recellularization of primary human lung mesenchymal matrix scaffolds and wound closure was inhibited by DE and enhanced with recombinant AREG alone. AREG treatment rescued the DE-induced inhibitory fibroblast effects. AREG intranasal treatment for 3 days during recovery phase reduced repetitive DE-induced airway inflammatory cell influx and cytokine release. Collectively, these studies demonstrate that inhibition of AREG reduced, whereas AREG supplementation promoted, the airway inflammatory recovery response following environmental bioaerosol exposure, and AREG enhanced fibroblast function, suggesting that AREG could be targeted in agricultural workers repetitively exposed to organic dust environments to potentially prevent and/or reduce disease.
Asunto(s)
Anfirregulina/farmacología , Polvo/prevención & control , Exposición a Riesgos Ambientales/efectos adversos , Fibroblastos/efectos de los fármacos , Exposición por Inhalación/efectos adversos , Pulmón/efectos de los fármacos , Agricultura/métodos , Animales , Células Cultivadas , Quimiocina CXCL1/metabolismo , Citocinas/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Interleucina-6/metabolismo , Pulmón/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
BACKGROUND: Environmental organic dust exposures enriched in Toll-like receptor (TLR) agonists can reduce allergic asthma development but are associated with occupational asthma and chronic bronchitis. The TLR adaptor protein myeloid differentiation factor88 (MyD88) is fundamental in regulating acute inflammatory responses to organic dust extract (ODE), yet its role in repetitive exposures is unknown and could inform future strategies. METHODS: Wild-type (WT) and MyD88 knockout (KO) mice were exposed intranasally to ODE or saline daily for 3 weeks (repetitive exposure). Repetitively exposed animals were also subsequently rested with no treatments for 4 weeks followed by single rechallenge with saline/ODE. RESULTS: Repetitive ODE exposure induced neutrophil influx and release of pro-inflammatory cytokines and chemokines were profoundly reduced in MyD88 KO mice. In comparison, ODE-induced cellular aggregates, B cells, mast cell infiltrates and serum IgE levels remained elevated in KO mice and mucous cell metaplasia was increased. Expression of ODE-induced tight junction protein(s) was also MyD88-dependent. Following recovery and then rechallenge with ODE, inflammatory mediators, but not neutrophil influx, was reduced in WT mice pretreated with ODE coincident with increased expression of IL-33 and IL-10, suggesting an adaptation response. Repetitively exposed MyD88 KO mice lacked inflammatory responsiveness upon ODE rechallenge. CONCLUSIONS: MyD88 is essential in mediating the classic airway inflammatory response to repetitive ODE, but targeting MyD88 does not reduce mucous cell metaplasia, lymphocyte influx, or IgE responsiveness. TLR-enriched dust exposures induce a prolonged adaptation response that is largely MyD88-independent. These findings demonstrate the complex role of MyD88-dependent signaling during acute vs. chronic organic dust exposures.
Asunto(s)
Adaptación Fisiológica/fisiología , Polvo , Exposición a Riesgos Ambientales/efectos adversos , Exposición por Inhalación/efectos adversos , Enfermedades Pulmonares/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Animales , Femenino , Enfermedades Pulmonares/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
Inflammation from airborne microbes can overwhelm compensatory mucociliary clearance mechanisms, leading to mucous cell metaplasia. Toll-like receptor (TLR) activation via myeloid differentiation factor 88 (MyD88) signaling is central to pathogen responses. We have previously shown that agricultural organic dust extract (ODE), with abundant microbial component diversity, activates TLR-induced airway inflammation. With the use of an established model, C57BL/6J wild-type (WT) and global MyD88 knockout (KO) mice were treated with intranasal inhalation of ODE or saline, daily for 1 wk. ODE primarily increased mucin (Muc)5ac levels relative to Muc5b. Compared with ODE-challenged WT mice, ODE-challenged, MyD88-deficient mice demonstrated significantly increased Muc5ac immunostaining, protein levels by immunoblot, and expression by quantitative PCR. The enhanced Muc5ac levels in MyD88-deficient mice were not explained by differences in the differentiation program of airway secretory cells in naïve mice. Increased Muc5ac levels in MyD88-deficient mice were also not explained by augmented inflammation, IL-17A, or neutrophil elastase levels. Furthermore, the enhanced airway mucins in the MyD88-deficient mice were not due to defective secretion, as the mucin secretory capacity of MyD88-KO mice remained intact. Finally, ODE-induced Muc5ac levels were enhanced in MyD88-deficient airway epithelial cells in vitro. In conclusion, MyD88 deficiency enhances airway mucous cell metaplasia under environments with high TLR activation.
Asunto(s)
Mediadores de Inflamación/metabolismo , Pulmón/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Receptores Toll-Like/metabolismo , Animales , Citocinas/metabolismo , Exposición por Inhalación , Ratones Endogámicos C57BL , Mucina 5AC/genéticaRESUMEN
Agriculture exposures are associated with reducing the risk of allergy and asthma in early life; yet, repeated exposures later in life are associated with chronic bronchitis and obstructive pulmonary diseases. The objective of this study was to investigate the airway inflammatory response to organic dust extract (ODE) in mice with established ovalbumin (OVA)-induced experimental asthma. C57BL/6 mice were either OVA sensitized/aerosol-exposed or saline (Sal) sensitized/aerosol-challenged. Both groups were then subsequently challenged once with intranasal saline or swine confinement ODE to obtain 4 treatment groups of Sal-Sal, Sal-ODE, OVA-Sal, and OVA-ODE. Airway hyper-responsiveness (AHR) to methacholine, bronchiolar lavage fluid, lung tissues, and serum were collected. Intranasal inhalation of ODE in OVA-treated (asthmatic) mice (OVA-ODE) increased AHR and total cellular influx marked by elevated neutrophil and eosinophil counts. Flow cytometry analysis further demonstrated that populations of CD11chi dendritic cells (DC), CD3+ T cells, CD19+ B cells, and NKp46+ group 3 innate lymphoid cells (ILC3) were increased in lavage fluid of OVA-ODE mice as compared to ODE or OVA alone. Alveolar macrophages, DC, and T cells were significantly increased with co-exposure to OVA-ODE as compared to OVA alone. Lung ILC2 and ILC3 were only increased in OVA-Sal mice. Cytokine/chemokine levels varied with exposure to OVA-ODE reflecting an additive mixture of the pro- and allergic-inflammatory profiles. Collectively, ODE increased airway inflammatory cells and chemotactic mediator release in allergic (OVA) sensitized mice to suggest that persons with allergy/asthma be identified and warned prior to the occupational exposure of potentially worsening airway disease.
Asunto(s)
Hiperreactividad Bronquial/inducido químicamente , Polvo , Exposición por Inhalación/efectos adversos , Agricultura Orgánica , Ovalbúmina/toxicidad , Animales , Hiperreactividad Bronquial/inmunología , Hiperreactividad Bronquial/patología , Pollos , Polvo/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , PorcinosRESUMEN
BACKGROUND: Agriculture organic dust exposures induce lung disease with lymphoid aggregates comprised of both T and B cells. The precise role of B cells in mediating lung inflammation is unknown, yet might be relevant given the emerging role of B cells in obstructive pulmonary disease and associated autoimmunity. METHODS: Using an established animal model, C57BL/6 wild-type (WT) and B-cell receptor (BCR) knock-out (KO) mice were repetitively treated with intranasal inhalation of swine confinement organic dust extract (ODE) daily for 3 weeks and lavage fluid, lung tissues, and serum were collected. RESULTS: ODE-induced neutrophil influx in lavage fluid was not reduced in BCR KO animals, but there was reduction in TNF-α, IL-6, CXCL1, and CXCL2 release. ODE-induced lymphoid aggregates failed to develop in BCR KO mice. There was a decrease in ODE-induced lung tissue CD11c+CD11b+ exudative macrophages and compensatory increase in CD8+ T cells in lavage fluid of BCR KO animals. Compared to saline, there was an expansion of conventional B2-, innate B1 (CD19+CD11b+CD5+/-)-, and memory (CD19+CD273+/-CD73+/-) B cells following ODE exposure in WT mice. Autoreactive responses including serum IgG anti-citrullinated protein antibody (ACPA) and anti-malondialdehyde-acetaldehyde (MAA) autoantibodies were increased in ODE treated WT mice as compared to saline control. B cells and serum immunoglobulins were not detected in BCR KO animals. CONCLUSIONS: Lung tissue staining for citrullinated and MAA modified proteins were increased in ODE-treated WT animals, but not BCR KO mice. These studies show that agriculture organic dust induced lung inflammation is dependent upon B cells, and dust exposure induces an autoreactive response.
Asunto(s)
Linfocitos B/fisiología , Polvo , Exposición por Inhalación/efectos adversos , Neumonía/patología , Animales , Linfocitos B/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neumonía/etiología , Neumonía/inmunología , PorcinosRESUMEN
Epithelial-mesenchymal transition (EMT) is critical for embryonic development, and this process is recapitulated in adults during wound healing, tissue regeneration, fibrosis and cancer progression. Cell migration is believed to play a key role in both normal wound repair and in abnormal tissue remodeling. Prostaglandin E2 (PGE2) inhibits fibroblast chemotaxis, but stimulates chemotaxis in airway epithelial cells. The current study was designed to explore the role of PGE2 and its four receptors on airway epithelial cell migration following EMT using both the Boyden blindwell chamber chemotaxis assay and the wound closure assay. EMT in human bronchial epithelial cells (HBECs) was induced by TGF-ß1 and a mixture of cytokines (IL-1ß, TNF-α, and IFN-γ). PGE2 and selective agonists for all four EP receptors stimulated chemotaxis and wound closure in HBECs. Following EMT, the EP1 and EP3 agonists were without effect, while the EP2 and EP4 agonists inhibited chemotaxis as did PGE2. The effects of the EP2 and EP4 receptors on HBEC and EMT cell migration were further confirmed by blocking the expected signaling pathways. Taken together, these results demonstrate that PGE2 switches from a stimulator to an inhibitor of cell migration following EMT of airway epithelial cells and that this inhibition is mediated by an altered effect of EP2 and EP4 signaling and an apparent loss of the stimulatory effects of EP1 and EP3. Change in the PGE2 modulation of chemotaxis may play a role in repair following injury.
Asunto(s)
Movimiento Celular/efectos de los fármacos , Dinoprostona/farmacología , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Línea Celular , Citocinas/metabolismo , Células Epiteliales/citología , HumanosRESUMEN
Efficacious therapeutic options capable of resolving inflammatory lung disease associated with environmental and occupational exposures are lacking. This study sought to determine the preclinical therapeutic potential of lung-delivered recombinant interleukin (IL)-10 therapy following acute organic dust exposure in mice. Here, C57BL/6J mice were intratracheally instilled with swine confinement organic dust extract (ODE) (12.5%, 25%, 50% concentrations) with IL-10 (1 µg) treatment or vehicle control intratracheally-administered three times: 5 hr post-exposure and then daily for 2 days. The results showed that IL-10 treatment reduced ODE (25%)-induced weight loss by 66% and 46% at Day 1 and Day 2 post-exposure, respectively. IL-10 treatment reduced ODE (25%, 50%)-induced lung levels of TNFα (-76%, -83% [reduction], respectively), neutrophil chemoattractant CXCL1 (-51%, -60%), and lavage fluid IL-6 (-84%, -89%). IL-10 treatment reduced ODE (25%, 50%)-induced lung neutrophils (-49%, -70%) and recruited CD11cintCD11b+ monocyte-macrophages (-49%, -70%). IL-10 therapy reduced ODE-associated expression of antigen presentation (MHC Class II, CD80, CD86) and inflammatory (Ly6C) markers and increased anti-inflammatory CD206 expression on CD11cintCD11b+ cells. ODE (12.5%, 25%)-induced lung pathology was also reduced with IL-10 therapy. In conclusion, the studies here showed that short-term, lung-delivered IL-10 treatment induced a beneficial response in reducing inflammatory consequences (that were also associated with striking reduction in recruited monocyte-macrophages) following acute complex organic dust exposure.
Asunto(s)
Enfermedades Pulmonares , Neumonía , Animales , Ratones , Porcinos , Interleucina-10/metabolismo , Ratones Endogámicos C57BL , Neumonía/tratamiento farmacológico , Pulmón/patología , Enfermedades Pulmonares/inducido químicamente , Enfermedades Pulmonares/tratamiento farmacológico , PolvoRESUMEN
Background: Environmental lipopolysaccharide (LPS) and microbial component-enriched organic dusts cause significant lung disease. These environmental exposures induce the recruitment and activation of distinct lung monocyte/macrophage subpopulations involved in disease pathogenesis. Aconitate decarboxylase 1 (Acod1) was one of the most upregulated genes following LPS (vs. saline) exposure of murine whole lungs with transcriptomic profiling of sorted lung monocyte/macrophage subpopulations also highlighting its significance. Given monocyte/macrophage activation can be tightly linked to metabolism, the objective of these studies was to determine the role of the immunometabolic regulator ACOD1 in environmental exposure-induced lung inflammation. Methods: Wild-type (WT) mice were intratracheally (i.t.) instilled with 10 µg of LPS or saline. Whole lungs were profiled using bulk RNA sequencing or sorted to isolate monocyte/macrophage subpopulations. Sorted subpopulations were then characterized transcriptomically using a NanoString innate immunity multiplex array 48 h post-exposure. Next, WT and Acod1-/- mice were instilled with LPS, 25% organic dust extract (ODE), or saline, whereupon serum, bronchoalveolar lavage fluid (BALF), and lung tissues were collected. BALF metabolites of the tricarboxylic acid (TCA) cycle were quantified by mass spectrometry. Cytokines/chemokines and tissue remodeling mediators were quantitated by ELISA. Lung immune cells were characterized by flow cytometry. Invasive lung function testing was performed 3 h post-LPS with WT and Acod1-/- mice. Results: Acod1-/- mice treated with LPS demonstrated decreased BALF levels of itaconate, TCA cycle reprogramming, decreased BALF neutrophils, increased lung CD4+ T cells, decreased BALF and lung levels of TNF-α, and decreased BALF CXCL1 compared to WT animals. In comparison, Acod1-/- mice treated with ODE demonstrated decreased serum pentraxin-2, BALF levels of itaconate, lung total cell, neutrophil, monocyte, and B-cell infiltrates with decreased BALF levels of TNF-α and IL-6 and decreased lung CXCL1 vs. WT animals. Mediators of tissue remodeling (TIMP1, MMP-8, MMP-9) were also decreased in the LPS-exposed Acod1-/- mice, with MMP-9 also reduced in ODE-exposed Acod1-/- mice. Lung function assessments demonstrated a blunted response to LPS-induced airway hyperresponsiveness in Acod1-/- animals. Conclusion: Acod1 is robustly upregulated in the lungs following LPS exposure and encodes a key immunometabolic regulator. ACOD1 mediates the proinflammatory response to acute inhaled environmental LPS and organic dust exposure-induced lung inflammation.
Asunto(s)
Carboxiliasas , Lipopolisacáridos , Ratones Noqueados , Animales , Ratones , Carboxiliasas/metabolismo , Carboxiliasas/genética , Lipopolisacáridos/inmunología , Líquido del Lavado Bronquioalveolar/inmunología , Líquido del Lavado Bronquioalveolar/citología , Ratones Endogámicos C57BL , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Exposición a Riesgos Ambientales/efectos adversos , Neumonía/inmunología , Neumonía/inducido químicamente , Neumonía/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Citocinas/metabolismo , Masculino , HidroliasasRESUMEN
OBJECTIVES: Interstitial lung disease (ILD) is associated with significant mortality in rheumatoid arthritis (RA) patients with key cellular players remaining largely unknown. This study aimed to characterize inflammatory and myeloid derived suppressor cell (MDSC) subpopulations in RA-ILD as compared to RA, idiopathic pulmonary fibrosis (IPF) without autoimmunity, and controls. METHODS: Peripheral blood was collected from patients with RA, RA-ILD, IPF, and controls (N = 60, 15/cohort). Myeloid cell subpopulations were identified phenotypically by flow cytometry using the following markers:CD45,CD3,CD19,CD56,CD11b,HLA-DR,CD14,CD16,CD15,CD125,CD33. Functionality of subsets were identified with intracellular arginase-1 (Arg-1) and inducible nitric oxide synthase (iNOS) expression. RESULTS: There was increased intermediate (CD14++CD16+) and nonclassical (CD14+/-CD16++) and decreased classical (CD14++CD16-) monocytes in RA, RA-ILD, and IPF vs. control. Intermediate monocytes were higher and classical monocytes were lower in RA-ILD vs. RA but not IPF. Monocytic (m)MDSCs were higher in RA-ILD vs. control and RA but not IPF. Granulocytic (g)MDSCs did not significantly differ. In contrast, neutrophils were increased in IPF and RA-ILD patients with elevated expression of Arg-1 sharing similar dimensional clustering pattern. Eosinophils were increased in RA-ILD vs. controls, RA and IPF. Across cohorts, iNOS was decreased in intermediate/nonclassical monocytes but increased in mMDSCs vs. classical monocytes. In RA-ILD, iNOS positive mMDSCs were increased versus classic monocytes. CONCLUSIONS: Myeloid cell subpopulations are significantly modulated in RA-ILD patients with expansion of CD16+ monocytes, mMDSCs, and neutrophils, a phenotypic profile more aligned with IPF than other RA patients. Eosinophil expansion was unique to RA-ILD, potentially facilitating disease pathogenesis and providing a future therapeutic target.
Asunto(s)
Artritis Reumatoide , Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares Intersticiales , Humanos , Monocitos , Células MieloidesRESUMEN
Lung fibroblasts are believed to be a major source of vascular endothelial growth factor (VEGF), which supports the survival of lung endothelial cells and modulates the maintenance of the pulmonary microvasculature. VEGF has been related to the pathogenesis of lung diseases, including chronic obstructive pulmonary disease (COPD). Prostaglandin E2 (PGE2) stimulates VEGF production from lung fibroblasts via the E-prostanoid (EP)-2 receptor. The EP2 signaling pathway uses cyclic adenosine monophosphate (cAMP) as a second messenger, and cAMP is degraded by phosphodiesterases (PDEs). This study investigates whether phosphodiesterase inhibition modulates the human lung fibroblast VEGF production induced by PGE2. Human fetal lung fibroblasts were cultured with PGE2 and PDE inhibitors. The PDE4 inhibitors roflumilast, roflumilast N-oxide, and rolipram with PGE2 increased VEGF release, as quantified in supernatant media by ELISA. In contrast, PDE3, PDE5, and PDE7 inhibitors did not affect VEGF release. Roflumilast increased VEGF release with either an EP2 or an EP4 agonist. Roflumilast augmented the cytosolic cAMP levels induced by PGE2 and VEGF release with other agents that use the cAMP signaling pathway. Roflumilast-augmented VEGF release was completely inhibited by a protein kinase A (PKA) inhibitor. Roflumilast with PGE2 increased VEGF mRNA levels, and the blockade of mRNA synthesis inhibited the augmented VEGF release. The stimulatory effect of roflumilast on VEGF release was replicated using primary healthy and COPD lung fibroblasts. These findings demonstrate that PDE4 inhibition can modulate human lung fibroblast VEGF release by PGE2 acting through the EP2 and EP4 receptor-cAMP/PKA signaling pathway. Through this action, PDE4 inhibitors such as roflumilast could contribute to the survival of lung endothelial cells.
Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Dinoprostona/farmacología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Inhibidores de Fosfodiesterasa 4/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Aminopiridinas/farmacología , Benzamidas/farmacología , Células Cultivadas , AMP Cíclico/genética , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ciclopropanos/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Pulmón/citología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , ARN Mensajero/genética , Subtipo EP2 de Receptores de Prostaglandina E/genética , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Transducción de Señal/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/genéticaRESUMEN
Fibroblasts are the major mesenchymal cells present within the interstitium of the lung and are a major source of vascular endothelial growth factor (VEGF), which modulates the maintenance of pulmonary microvasculature. Prostaglandin E(2) (PGE(2)) acts on a set of E-prostanoid (EP) receptors that activate multiple signal transduction pathways leading to downstream responses. We investigated the modulation by PGE(2) of VEGF release by human lung fibroblasts. Human lung fibroblasts were cultured until reaching 90% confluence in tissue culture plates, after which the culture media were changed to serum-free Dulbecco's modified Eagle's medium, with or without PGE(2), and with specific agonists or antagonists for each EP receptor. After 2 days, culture media were assayed for VEGF by ELISA. The results demonstrated that PGE(2) and the EP2 agonist ONO-AE1-259-01 significantly stimulated the release of VEGF in a concentration-dependent manner. Agonists for other EP receptors did not stimulate the release of VEGF. The stimulatory effect of PGE(2) was blocked by the EP2 antagonist AH6809, but was not blocked by antagonists for other EP receptors. The protein kinase-A (PKA) inhibitor KT-5720 also blocked the stimulatory effect of PGE(2). The increased release of VEGF induced by PGE(2) was accompanied by a transient increase in the concentration of VEGF mRNA. These findings demonstrate that PGE(2) can modulate the release of VEGF by human lung fibroblasts through its actions in the EP2 receptor/PKA pathway. This activity may contribute to the maintenance of pulmonary microvasculature in the alveolar wall.
Asunto(s)
Dinoprostona/fisiología , Pulmón/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/fisiología , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Pulmón/citología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor A de Crecimiento Endotelial Vascular/genéticaRESUMEN
Although lung diseases typically result from long-term exposures, even a robust, one-time exposure can result in long-lasting consequences. Endotoxin is a ubiquitous environmental/occupational inflammatory agent often used to model airway inflammation. Using a murine model, the return to lung homeostasis following high dose inhalant lipopolysaccharide (LPS, 10-100 µg) exposure were delineated over 2 weeks. LPS-induced rapid weight loss, release of proinflammatory mediators, and inflammatory cell influx with prolonged persistence of activated macrophages CD11c+CD11b+ and recruited/transitioning CD11cintCD11b+ monocyte-macrophages out to 2 weeks. Next, lung-delivered recombinant (r) interleukin (IL)-10 was intratracheally administered for 3 doses initiated 5 h following LPS (10 µg) exposure for 2 days. IL-10 therapy reduced LPS-induced weight loss and increased blood glucose levels. Whereas there was no difference in LPS-induced bronchoalveolar lavage airway fluid cellular influx, total lung cell infiltrates were reduced (37%) with rIL-10 treatment. Post-LPS exposure treatment with rIL-10 strikingly reduced lavage fluid and lung homogenate levels of tumor necrosis factor-α (88% and 93% reduction, respectively), IL-6 (98% and 94% reduction), CXCL1 (66% and 75% reduction), and CXCL2 (47% and 67% reduction). LPS-induced recruited monocyte-macrophages (CD11cintCD11b+) were reduced (68%) with rIL-10. Correspondingly, LPS-induced lung tissue CCR2+ inflammatory monocyte-macrophage were reduced with rIL-10. There were also reductions in LPS-induced lung neutrophils, lymphocyte subpopulations, collagen content, and vimentin expression. These findings support the importance of studying resolution processes for the development of treatment after unintended environmental/occupational biohazard exposures. Short-term, lung-delivered rIL-10 favorably hastened inflammatory recovery processes following acute, high dose inhalant LPS exposure.
Asunto(s)
Interleucina-10 , Neumonía , Animales , Glucemia/metabolismo , Líquido del Lavado Bronquioalveolar , Antígeno CD11c/metabolismo , Endotoxinas/metabolismo , Sustancias Peligrosas/efectos adversos , Inflamación/patología , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/metabolismo , Pulmón/patología , Ratones , Neumonía/inducido químicamente , Neumonía/tratamiento farmacológico , Neumonía/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Vimentina/metabolismo , Pérdida de PesoRESUMEN
The migration of fibroblasts is believed to play a key role in both normal wound repair and abnormal tissue remodeling. Prostaglandin E (PGE)(2), a mediator that can inhibit many fibroblast functions including chemotaxis, was reported to be mediated by the E-prostanoid (EP) receptor EP2. PGE(2), however, can act on four receptors. This study was designed to determine if EP receptors, in addition to EP2, can modulate fibroblast chemotaxis. Using human fetal lung fibroblasts, the expression of all four EP receptors was demonstrated by Western blotting. EP2-selective and EP4-selective agonists inhibited both chemotaxis toward fibronectin in the blindwell assay and migration in a wound-closure assay. In contrast, EP1-selective and EP3-selective agonists stimulated cell migration in both assay systems. These results were confirmed using EP-selective antagonists. The role of both EP2 and EP4 receptors in mediating the PGE(2) inhibition of chemotaxis was also confirmed by small interfering RNA suppression. Furthermore, the role of EP receptors was confirmed by blocking the expected signaling pathways. Taken together, these results demonstrate that PGE(2) can act on multiple EP receptors in human lung fibroblasts, to exert disparate effects. Alterations in EP receptor expression may have the potential to alter PGE(2) action. Targeting specific EP receptors may offer therapeutic opportunities in conditions characterized by abnormal tissue repair and remodeling.
Asunto(s)
Bronquios/metabolismo , Quimiotaxis , Dinoprostona/metabolismo , Fibroblastos/metabolismo , Receptores de Prostaglandina E/metabolismo , Transducción de Señal , Cicatrización de Heridas , Western Blotting , Bronquios/efectos de los fármacos , Proliferación Celular , Células Cultivadas , Quimiotaxis/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibronectinas/metabolismo , Humanos , Interferencia de ARN , Receptores de Prostaglandina E/agonistas , Receptores de Prostaglandina E/genética , Subtipo EP1 de Receptores de Prostaglandina E/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Subtipo EP3 de Receptores de Prostaglandina E/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Cicatrización de Heridas/efectos de los fármacosRESUMEN
Airborne biohazards are risk factors in the development and severity of rheumatoid arthritis (RA) and RA-associated lung disease, yet the mechanisms explaining this relationship remain unclear. Lipopolysaccharide (LPS, endotoxin) is a ubiquitous inflammatory agent in numerous environmental and occupational air pollutant settings recognized to induce airway inflammation. Combining repetitive LPS inhalation exposures with the collagen induced arthritis (CIA) model, DBA1/J mice were assigned to either: sham (saline injection/saline inhalation), CIA (CIA/saline), LPS (saline/LPS 100 ng inhalation), or CIA + LPS for 5 weeks. Serum anti-citrullinated (CIT) protein antibody (ACPA) and anti-malondialdehyde-acetaldehyde (MAA) antibodies were strikingly potentiated with co-exposure (CIA + LPS). CIT- and MAA-modified lung proteins were increased with co-exposure and co-localized across treatment groups. Inhaled LPS exacerbated arthritis with CIA + LPS > LPS > CIA versus sham. Periarticular bone loss was demonstrated in CIA and CIA + LPS but not in LPS alone. LPS induced airway inflammation and neutrophil infiltrates were reduced with co-exposure (CIA + LPS). Potentially signaling transition to pro-fibrotic processes, there were increased infiltrates of activated CD11c+CD11b+ macrophages and transitioning CD11c+CD11bint monocyte-macrophage populations with CIA + LPS. Moreover, several lung remodeling proteins including fibronectin and matrix metalloproteinases as well as complement C5a were potentiated with CIA + LPS compared to other treatment groups. IL-33 concentrations in lung homogenates were enhanced with CIA + LPS with IL-33 lung staining driven by LPS. IL-33 expression was also significantly increased in lung tissues from patients with RA-associated lung disease (N = 8) versus controls (N = 7). These findings suggest that patients with RA may be more susceptible to developing interstitial lung disease following airborne biohazard exposures enriched in LPS.