Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Biol ; 20(10): e3001803, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36269764

RESUMEN

Brain asymmetry in the sensitivity to spectrotemporal modulation is an established functional feature that underlies the perception of speech and music. The left auditory cortex (ACx) is believed to specialize in processing fast temporal components of speech sounds, and the right ACx slower components. However, the circuit features and neural computations behind these lateralized spectrotemporal processes are poorly understood. To answer these mechanistic questions we use mice, an animal model that captures some relevant features of human communication systems. In this study, we screened for circuit features that could subserve temporal integration differences between the left and right ACx. We mapped excitatory input to principal neurons in all cortical layers and found significantly stronger recurrent connections in the superficial layers of the right ACx compared to the left. We hypothesized that the underlying recurrent neural dynamics would exhibit differential characteristic timescales corresponding to their hemispheric specialization. To investigate, we recorded spike trains from awake mice and estimated the network time constants using a statistical method to combine evidence from multiple weak signal-to-noise ratio neurons. We found longer temporal integration windows in the superficial layers of the right ACx compared to the left as predicted by stronger recurrent excitation. Our study shows substantial evidence linking stronger recurrent synaptic connections to longer network timescales. These findings support speech processing theories that purport asymmetry in temporal integration is a crucial feature of lateralization in auditory processing.


Asunto(s)
Corteza Auditiva , Percepción del Habla , Percepción del Tiempo , Humanos , Ratones , Animales , Corteza Auditiva/fisiología , Percepción del Tiempo/fisiología , Estimulación Acústica , Percepción Auditiva/fisiología , Habla , Percepción del Habla/fisiología
2.
Artículo en Inglés | MEDLINE | ID: mdl-32116569

RESUMEN

The neural circuits responsible for social communication are among the least understood in the brain. Human studies have made great progress in advancing our understanding of the global computations required for processing speech, and animal models offer the opportunity to discover evolutionarily conserved mechanisms for decoding these signals. In this review article, we describe some of the most well-established speech decoding computations from human studies and describe animal research designed to reveal potential circuit mechanisms underlying these processes. Human and animal brains must perform the challenging tasks of rapidly recognizing, categorizing, and assigning communicative importance to sounds in a noisy environment. The instructions to these functions are found in the precise connections neurons make with one another. Therefore, identifying circuit-motifs in the auditory cortices and linking them to communicative functions is pivotal. We review recent advances in human recordings that have revealed the most basic unit of speech decoded by neurons is a phoneme, and consider circuit-mapping studies in rodents that have shown potential connectivity schemes to achieve this. Finally, we discuss other potentially important processing features in humans like lateralization, sensitivity to fine temporal features, and hierarchical processing. The goal is for animal studies to investigate neurophysiological and anatomical pathways responsible for establishing behavioral phenotypes that are shared between humans and animals. This can be accomplished by establishing cell types, connectivity patterns, genetic pathways and critical periods that are relevant in the development and function of social communication.


Asunto(s)
Estimulación Acústica/métodos , Corteza Auditiva/fisiología , Red Nerviosa/fisiología , Percepción del Habla/fisiología , Habla/fisiología , Animales , Percepción Auditiva/fisiología , Humanos , Roedores , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA