Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Neuroinflammation ; 21(1): 230, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294742

RESUMEN

BACKGROUND: The IL-6 cytokine family, with its crucial and pleiotropic intracellular signaling pathway STAT3, is a promising target for treating vasoproliferative retinal diseases. Previous research has shown that IL-6 cis-signaling (via membrane-bound receptors) and trans-signaling (via soluble receptors) can have distinct effects on target cells, leading to their application in various disease treatments. While IL-6 has been extensively studied, less is known about the angiogenic effects of IL-11, another member of the IL-6 family, in the retina. Therefore, the aim of this study was to characterize the effects of IL-11 on retinal angiogenesis. MAIN TEXT: In vitreous samples from proliferative diabetic retinopathy (PDR) patients, elevated levels of IL-11Rα, but not IL-11, were detected. In vitro studies using vascular endothelial cells revealed distinct effects of cis- and trans-signaling: cis-signaling (IL-11 alone) had antiangiogenic effects, while trans-signaling (IL-11 + sIL-11Rα) had proangiogenic and pro-migratory effects. These differences can be attributed to their individual signaling responses and associated transcriptomic changes. Notably, no differences in cis- and trans-signaling were detected in primary mouse Müller cell cultures. STAT3 and STAT1 siRNA knockdown experiments revealed opposing effects on IL-11 signaling, with STAT3 functioning as an antiproliferative and proapoptotic player while STAT1 acts in opposition to STAT3. In vivo, both IL-11 and IL-11 + sIL-11Rα led to a reduction in retinal neovascularization. Immunohistochemical staining revealed Müller cell activation in response to treatment, suggesting that IL-11 affects multiple retinal cell types in vivo beyond vascular endothelial cells. CONCLUSIONS: Cis- and trans-signaling by IL-11 have contrasting angiomodulatory effects on endothelial cells in vitro. In vivo, cis- and trans-signaling also influence Müller cells, ultimately determining the overall angiomodulatory impact on the retina, highlighting the intricate interplay between vascular and glial cells in the retina.


Asunto(s)
Interleucina-11 , Retina , Transducción de Señal , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Células Cultivadas , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Células Endoteliales/metabolismo , Interleucina-11/metabolismo , Ratones Endogámicos C57BL , Retina/metabolismo , Transducción de Señal/fisiología , Factor de Transcripción STAT3/metabolismo
2.
J Vis Exp ; (207)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38884490

RESUMEN

Angiogenesis plays a crucial role in both physiological and pathological processes within the body including tumor growth or neovascular eye disease. A detailed understanding of the underlying molecular mechanisms and reliable screening models are essential for targeting diseases effectively and developing new therapeutic options. Several in vitro assays have been developed to model angiogenesis, capitalizing on the opportunities a controlled environment provides to elucidate angiogenic drivers at a molecular level and screen for therapeutic targets. This study presents workflows for investigating angiogenesis in vitro using human umbilical vein endothelial cells (HUVECs). We detail a scratch wound migration assay utilizing a live cell imaging system measuring endothelial cell migration in a 2D setting and the spheroid sprouting assay assessing endothelial cell sprouting in a 3D setting provided by a collagen matrix. Additionally, we outline strategies for sample preparation to enable further molecular analyses such as transcriptomics, particularly in the 3D setting, including RNA extraction as well as immunocytochemistry. Altogether, this framework offers scientists a reliable and versatile toolset to pursue their scientific inquiries in in vitro angiogenesis assays.


Asunto(s)
Movimiento Celular , Células Endoteliales de la Vena Umbilical Humana , Neovascularización Fisiológica , Humanos , Neovascularización Fisiológica/fisiología , Movimiento Celular/fisiología , Esferoides Celulares/citología , Angiogénesis
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167028, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38244944

RESUMEN

In angiogenesis research, scientists need to carefully select appropriate in vitro models to test their hypotheses to minimize the risk for false negative or false positive study results. In this study, we investigate molecular differences between simple two-dimensional and more complex three-dimensional angiogenesis assays and compare them to in vivo data from cancer-associated angiogenesis using an unbiased transcriptomic analysis. Human umbilical vein endothelial cells were treated with VEGF in 2D wound healing and proliferation assays and the 3D spheroid sprouting assay. VEGF-induced transcriptomic shifts were assessed in both settings by bulk RNA sequencing. Immunocytochemistry was used for protein detection. The data was linked to the transcriptomic profile of vascular endothelial cells from a single cell RNA sequencing dataset of various cancer tissue compared to adjacent healthy tissue control. VEGF induced a more diverse transcriptomic shift in vascular endothelial cells in a 3D experimental setting (767 differentially expressed genes) compared to the 2D settings (167 differentially expressed genes). Particularly, VEGF-induced changes in cell-matrix interaction, tip cell formation, and glycolysis were pronounced in the 3D spheroid sprouting experiments. Immunocytochemistry for VCAM1 and CD34 confirmed enhanced expression in response to VEGF-treatment in 3D settings. In vivo, vascular endothelial cells within various cancer tissue were characterized by strong transcriptomic changes in cell-matrix interaction and glycolysis similar to the 3D setting. Consequently, 3D assays may better address certain key aspects of angiogenesis in comparison to fast and scalable 2D assays. This should be taken into consideration within the context of each research question.


Asunto(s)
Neoplasias , Factor A de Crecimiento Endotelial Vascular , Humanos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Angiogénesis , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Cicatrización de Heridas , Neoplasias/metabolismo
4.
Sci Adv ; 7(28)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34244139

RESUMEN

Jupiter's rapidly rotating, strong magnetic field provides a natural laboratory that is key to understanding the dynamics of high-energy plasmas. Spectacular auroral x-ray flares are diagnostic of the most energetic processes governing magnetospheres but seemingly unique to Jupiter. Since their discovery 40 years ago, the processes that produce Jupiter's x-ray flares have remained unknown. Here, we report simultaneous in situ satellite and space-based telescope observations that reveal the processes that produce Jupiter's x-ray flares, showing surprising similarities to terrestrial ion aurora. Planetary-scale electromagnetic waves are observed to modulate electromagnetic ion cyclotron waves, periodically causing heavy ions to precipitate and produce Jupiter's x-ray pulses. Our findings show that ion aurorae share common mechanisms across planetary systems, despite temporal, spatial, and energetic scales varying by orders of magnitude.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA