Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur J Nucl Med Mol Imaging ; 51(3): 768-778, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37823909

RESUMEN

PURPOSE: Molecular radiotherapy is a treatment modality that is highly suitable for targeting micrometastases and [177Lu]Lu-DOTATATE is currently being explored as a potential novel treatment option for high-risk neuroblastoma. p53 is a key player in the proapoptotic signalling in response to radiation-induced DNA damage and is therefore a potential target for radiosensitisation. METHODS: This study investigated the use of the p53 stabilising peptide VIP116 and [177Lu]Lu-DOTATATE, either alone or in combination, for treatment of neuroblastoma tumour xenografts in mice. Initially, the uptake of [177Lu]Lu-DOTATATE in the tumours was confirmed, and the efficacy of VIP116 as a monotherapy was evaluated. Subsequently, mice with neuroblastoma tumour xenografts were treated with placebo, VIP116, [177Lu]Lu-DOTATATE or a combination of both agents. RESULTS: The results demonstrated that monotherapy with either VIP116 or [177Lu]Lu-DOTATATE significantly prolonged median survival compared to the placebo group (90 and 96.5 days vs. 50.5 days, respectively). Notably, the combination treatment further improved median survival to over 120 days. Furthermore, the combination group exhibited the highest percentage of complete remission, corresponding to a twofold increase compared to the placebo group. Importantly, none of the treatments induced significant nephrotoxicity. Additionally, the therapies affected various molecular targets involved in critical processes such as apoptosis, hypoxia and angiogenesis. CONCLUSION: In conclusion, the combination of VIP116 and [177Lu]Lu-DOTATATE presents a promising novel treatment approach for neuroblastoma. These findings hold potential to advance research efforts towards a potential cure for this vulnerable patient population.


Asunto(s)
Neuroblastoma , Tumores Neuroendocrinos , Compuestos Organometálicos , Tomografía de Emisión de Positrones , Cintigrafía , Humanos , Ratones , Animales , Proteína p53 Supresora de Tumor , Octreótido/uso terapéutico , Compuestos Organometálicos/uso terapéutico , Xenoinjertos , Neuroblastoma/radioterapia , Tumores Neuroendocrinos/radioterapia
2.
Eur J Nucl Med Mol Imaging ; 47(4): 980-990, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31912256

RESUMEN

PURPOSE: 177Lu-DOTATATE targeting the somatostatin receptor (SSTR) is utilized for treatment of neuroendocrine tumors (NETs). Onalespib, a heat shock protein 90 (HSP90) inhibitor, has demonstrated radiosensitizing properties and may thus enhance the effect of 177Lu-DOTATATE. Consequently, the aim of this study was to assess the potential of Onalespib in combination with 177Lu-DOTATATE in vivo and to examine the toxicity profiles of the treatments. METHODS: 177Lu-DOTATATE selectivity and distribution in NET xenografts were studied using biodistribution and autoradiography. Therapeutic effects of Onalespib in combination with 177Lu-DOTATATE were studied in NET xenografts. Histological analyses were used to assess molecular effects from treatment and to establish toxicity profiles. RESULTS: Biodistribution and autoradiography confirmed the SSTR-selective tumor uptake of 177Lu-DOTATATE, which was unaffected by Onalespib treatment. Immunohistochemistry verified molecular responses to Onalespib therapy in the tumors. While Onalespib and 177Lu-DOTATATE monotherapies resulted in a 10% and 33% delay in tumor doubling time compared with control, the combination treatment resulted in a 73% delayed tumor doubling time. Moreover, combination treatment increased complete remissions threefold from 177Lu-DOTATATE monotherapy, resulting in 29% complete remissions. In addition, histological analyses demonstrated radiation-induced glomerular injury in the 177Lu-DOTATATE monotherapy group. The damage was decreased tenfold in the combination group, potentially due to Onalespib-induced HSP70 upregulation in the kidneys. CONCLUSION: Treatment with Onalespib potentiated 177Lu-DOTATATE therapy of NET xenografts with a favorable toxicity profile. Utilizing Onalespib's radiosensitizing properties with 177Lu-DOTATATE may lead to better therapeutic results in the future and may reduce unwanted side effects in dose-limiting organs.


Asunto(s)
Tumores Neuroendocrinos , Compuestos Organometálicos , Animales , Benzamidas , Xenoinjertos , Isoindoles , Ratones , Tumores Neuroendocrinos/radioterapia , Octreótido/uso terapéutico , Compuestos Organometálicos/uso terapéutico , Distribución Tisular
3.
Anal Chem ; 89(24): 13212-13218, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29160688

RESUMEN

Cellular receptor activity is often controlled through complex mechanisms involving interactions with multiple molecules, which can be soluble ligands and/or other cell surface molecules. In this study, we combine a fluorescence-based technology for real-time interaction analysis with fluorescence quenching to create a novel time-resolved proximity assay to study protein-receptor interactions on living cells. This assay extracts the binding kinetics and affinity for two proteins if they bind in proximity on the cell surface. One application of real-time proximity interaction analysis is to study relative levels of receptor dimerization. The method was primarily evaluated using the HER2 binding antibodies Trastuzumab and Pertuzumab and two EGFR binding antibodies including Cetuximab. Using Cetuximab and Trastuzumab, proximity of EGFR and HER2 was investigated before and after treatment of cells with the tyrosine-kinase inhibitor Gefitinib. Treated cells displayed 50% increased proximity signal, whereas the binding characteristics of the two antibodies were not significantly affected, implying an increase in the EGFR-HER2 dimer level. These results demonstrate that real-time proximity interaction analysis enables determination of the interaction rate constants and affinity of two ligands while simultaneously quantifying their relative colocalization on living cells.


Asunto(s)
Receptor ErbB-2/análisis , Receptor ErbB-2/química , Anticuerpos Monoclonales Humanizados/química , Anticuerpos Monoclonales Humanizados/farmacología , Supervivencia Celular , Cetuximab/química , Cetuximab/farmacología , Receptores ErbB/análisis , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/química , Gefitinib/química , Gefitinib/farmacología , Humanos , Ligandos , Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Factores de Tiempo , Trastuzumab/química , Trastuzumab/farmacología , Células Tumorales Cultivadas
4.
Eur J Nucl Med Mol Imaging ; 43(5): 974-982, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26627081

RESUMEN

PURPOSE: Heat shock protein 90 (HSP90) is essential for the activation and stabilization of numerous oncogenic client proteins. AT13387 is a novel HSP90 inhibitor promoting degradation of oncogenic proteins upon binding, and may also act as a radiosensitizer. For optimal treatment there is, however, the need for identification of biomarkers for patient stratification and therapeutic response monitoring, and to find suitable targets for combination treatments. The aim of this study was to assess the response of surface antigens commonly expressed in squamous cell carcinoma to AT13387 treatment, and to find suitable biomarkers for molecular imaging and radioimmunotherapy in combination with HSP90 inhibition. METHODS: Cancer cell proliferation and radioimmunoassays were used to evaluate the effect of AT13387 on target antigen expression in vitro. Inhibitor effects were then assessed in vivo in mice-xenografts. Animals were treated with AT13387 (5 × 50 mg/kg), and were imaged with PET using either (18)F-FDG or (124)I-labelled tracers for EGFR and CD44v6, and this was followed by ex-vivo biodistribution analysis and immunohistochemical staining. RESULTS: AT13387 exposure resulted in high cytotoxicity and possible radiosensitization with IC50 values below 4 nM. Both in vitro and in vivo AT13387 effectively downregulated HSP90 client proteins. PET imaging with (124)I-cetuximab showed a significant decrease of EGFR in AT13387-treated animals compared with untreated animals. In contrast, the squamous cell carcinoma-associated biomarker CD44v6, visualized with (124)I-AbD19384 as well as (18)F-FDG uptake, were not significantly altered by AT13387 treatment. CONCLUSION: We conclude that AT13387 downregulates HSP90 client proteins, and that molecular imaging of these proteins may be a suitable approach for assessing treatment response. Furthermore, radioimmunotherapy targeting CD44v6 in combination with AT13387 may potentiate the radioimmunotherapy outcome due to radiosensitizing effects of the drug, and could potentially lead to a lower dose to normal tissues.


Asunto(s)
Benzamidas/farmacocinética , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/diagnóstico por imagen , Receptores ErbB/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Receptores de Hialuranos/metabolismo , Isoindoles/farmacocinética , Animales , Benzamidas/efectos adversos , Benzamidas/uso terapéutico , Carcinoma de Células Escamosas/radioterapia , Línea Celular , Femenino , Fluorodesoxiglucosa F18 , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Radioisótopos de Yodo , Isoindoles/efectos adversos , Isoindoles/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Tomografía de Emisión de Positrones , Radioinmunoterapia , Radiofármacos
5.
Mol Pharm ; 11(11): 4154-63, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25252166

RESUMEN

Antibody-drug conjugates (ADC) have shown promising effects in cancer therapy by combining the target specificity of an antibody with the toxicity of a chemotherapeutic drug. As the number of therapeutic antibodies is significantly larger than those used as ADCs, there is unused potential for more effective therapies. However, the conjugation of an additional molecule to an antibody may affect the interaction with its target, altering association rate, dissociation rate, or both. Any changes of the binding kinetics can have subsequent effects on the efficacy of the ADCs, thus the kinetics are important to monitor during ADC development and production. This paper describes a method for the analysis of conjugation effects on antibody binding to its antigen, using the instrument LigandTracer and a fluorescent monovalent anti-IgG binder denoted FIBA, which did not affect the interaction. All measurements were done in real time using living cells which naturally expressed the antigens. With this method the binding profiles of different conjugations of the therapeutic anti-EGFR antibody cetuximab and the anti-CD44v6 antibody fragment AbD15171 were evaluated and compared. Even comparatively small modifications of cetuximab altered the interaction with the epidermal growth factor receptor (EGFR). In contrast, no impact on the AbD15171-CD44v6 interaction was observed upon conjugation. This illustrates the importance to study the binding profile for each ADC combination, as it is difficult to draw any general conclusion about conjugation effects. The modification of interaction kinetics through conjugation opens up new possibilities when optimizing an antibody or an ADC, since the conjugations can be used to create a binding profile more apt for a specific clinical need.


Asunto(s)
Anticuerpos Antiidiotipos/metabolismo , Anticuerpos Monoclonales Humanizados/metabolismo , Anticuerpos Monoclonales/metabolismo , Carcinoma de Células Escamosas/patología , Receptores ErbB/metabolismo , Colorantes Fluorescentes , Receptores de Hialuranos/metabolismo , Anticuerpos Antiidiotipos/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales Humanizados/inmunología , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Cetuximab , Receptores ErbB/inmunología , Humanos , Receptores de Hialuranos/inmunología , Inmunoconjugados/química , Cinética , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Células Tumorales Cultivadas
6.
iScience ; 27(6): 109862, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38784022

RESUMEN

Immunotherapy has revolutionized cancer treatment but its efficacy depends on a robust immune response in the tumor. Silencing of the tumor suppressor p53 is common in tumors and can affect the recruitment and activation of different immune cells, leading to immune evasion and poor therapy response. We found that the p53 activating stapled peptide MDM2/MDMX inhibitor Sulanemadlin (ALRN-6924) inhibited p53 wild-type cancer cell growth in vitro and in vivo. In mice carrying p53 wild-type CT26.WT tumors, monotherapy with the PD-1 inhibitor DX400 or Sulanemadlin delayed tumor doubling time by 50% and 37%, respectively, while combination therapy decreased tumor doubling time by 93% leading to an increased median survival time. Sulanemadlin treatment led to increased immunogenicity and combination treatment with PD-1 inhibition resulted in an increased tumor infiltration of lymphocytes. This combination treatment strategy could potentially turn partial responders into responders of immunotherapy, expanding the patient target group for PD-1-targeting immunotherapy.

7.
Nat Commun ; 15(1): 489, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216578

RESUMEN

Although stapled α-helical peptides can address challenging targets, their advancement is impeded by poor understandings for making them cell permeable while avoiding off-target toxicities. By synthesizing >350 molecules, we present workflows for identifying stapled peptides against Mdm2(X) with in vivo activity and no off-target effects. Key insights include a clear correlation between lipophilicity and permeability, removal of positive charge to avoid off-target toxicities, judicious anionic residue placement to enhance solubility/behavior, optimization of C-terminal length/helicity to enhance potency, and optimization of staple type/number to avoid polypharmacology. Workflow application gives peptides with >292x improved cell proliferation potencies and no off-target cell proliferation effects ( > 3800x on-target index). Application of these 'design rules' to a distinct Mdm2(X) peptide series improves ( > 150x) cellular potencies and removes off-target toxicities. The outlined workflow should facilitate therapeutic impacts, especially for those targets such as Mdm2(X) that have hydrophobic interfaces and are targetable with a helical motif.


Asunto(s)
Péptidos , Proteínas Proto-Oncogénicas c-mdm2 , Péptidos/farmacología , Péptidos/química
8.
Cancers (Basel) ; 15(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37686514

RESUMEN

Carcinoembryonic antigen (CEA) has emerged as an attractive target for theranostic applications in colorectal cancers (CRCs). In the present study, the humanized anti-CEA antibody hT84.66-M5A (M5A) was labeled with 177Lu for potential CRC therapy. Moreover, the novel combination of 177Lu-DOTA-M5A with the heat shock protein 90 inhibitor onalespib, suggested to mediate radiosensitizing properties, was assessed in vivo for the first time. M5A antibody uptake and therapeutic effects, alone or in combination with onalespib, were assessed in human CRC xenografts and visualized using SPECT/CT imaging. Although both 177Lu-DOTA-M5A and onalespib monotherapies effectively reduced tumor growth rates, the combination therapy demonstrated the most substantial impact, achieving a fourfold reduction in tumor growth compared to the control group. Median survival increased by 33% compared to 177Lu-DOTA-M5A alone, and tripled compared to control and onalespib groups. Importantly, combination therapy yielded comparable or superior effects to the double dose of 177Lu-DOTA-M5A monotherapy. 177Lu-DOTA-M5A increased apoptotic cell levels, indicating its potential to induce tumor cell death. These findings show promise for 177Lu-DOTA-M5A as a CRC therapeutic agent, and its combination with onalespib could significantly enhance treatment efficacy. Further in vivo studies are warranted to validate these findings fully and explore the treatment's potential for clinical use.

9.
J Photochem Photobiol B ; 243: 112716, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37126865

RESUMEN

Photodynamic therapy (PDT) has been used as an alternative or as a complement of conventional approaches for cancer treatment. In PDT, the reactive oxygen species (ROS) produced from the interaction between the photosensitizer (PS), visible light and molecular oxygen, kill malignant cells by triggering a cascade of cytotoxic reactions. In this process, the PS plays an extremely important role in the effectiveness of the therapy. In the present work, a new photoimmunoconjugate (PIC), based on cetuximab and the known third generation PS-glycophthalocyanine ZnPcGal4, was synthesized via reductive amination. The rationale behind this was the simultaneous cancer-associated specific targeting of PIC and photosensitization of targeted receptor positive cells. Varied reaction parameters and photodynamic conditions, such as PS concentrations and both type and intensities of light, were optimized. ZnPcGal4 showed significant photoactivity against EGFR expressing A431, EGFR-transfected HCT116 and HT29 cells when irradiated with white light of stronger intensity (38 mW/cm2). Similarly, the synthesized PICs-T1 and T2 also demonstrated photoactivity with high intensity white light. The best optimized PIC: sample 28 showed no precipitation and aggregation when inspected visually and analyzed through SE-HPLC. Fluorescence excitation of sample 28 and 125I-sample 28 radioconjugate (125I-PIC, 125I-radiolabeling yield ≥95%, determined with ITLC) at 660 nm showed presence of appended ZnPcGal4. In addition, simultaneous fluorescence and radioactivity detection of the 125I-PIC in serum and PBS (pH 7.4) for the longest incubated time point of 72 h, respectively, and superimposed signals thereof demonstrated ≥99% of loading and/or labeling yield, assuring overall stability of the PIC and corresponding PIC-radioconjugate w.r.t. both the appended ZnPcGal4 and bound-125I. Moreover, real-time binding analyses on EGFR-transfected HCT116 cells showed specific binding of 125I-PIC, suggesting no alternation in the binding kinetics of the mAb after appending it with ZnPcGal4. These results suggest dual potential applications of synthesized PICs both for PDT and radio-immunotherapy of cancer.


Asunto(s)
Inmunoconjugados , Neoplasias , Fotoquimioterapia , Humanos , Inmunoconjugados/farmacología , Inmunoconjugados/química , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Receptores ErbB/metabolismo , Línea Celular Tumoral
10.
Nat Commun ; 14(1): 4732, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563127

RESUMEN

Chimeric antigen receptor (CAR)-T cell therapy is rapidly advancing as cancer treatment, however, designing an optimal CAR remains challenging. A single-chain variable fragment (scFv) is generally used as CAR targeting moiety, wherein the complementarity-determining regions (CDRs) define its specificity. We report here that the CDR loops can cause CAR clustering, leading to antigen-independent tonic signalling and subsequent CAR-T cell dysfunction. We show via CARs incorporating scFvs with identical framework and varying CDR sequences that CARs may cluster on the T cell surface, which leads to antigen-independent CAR-T cell activation, characterized by increased cell size and interferon (IFN)-γ secretion. This results in CAR-T cell exhaustion, activation-induced cell death and reduced responsiveness to target-antigen-expressing tumour cells. CDR mutagenesis confirms that the CAR-clustering is mediated by CDR-loops. In summary, antigen-independent tonic signalling can be induced by CDR-mediated CAR clustering, which could not be predicted from the scFv sequences, but could be tested for by evaluating the activity of unstimulated CAR-T cells.


Asunto(s)
Regiones Determinantes de Complementariedad , Anticuerpos de Cadena Única , Regiones Determinantes de Complementariedad/genética , Regiones Determinantes de Complementariedad/metabolismo , Linfocitos T , Inmunoterapia Adoptiva/métodos , Transducción de Señal , Línea Celular Tumoral , Receptores de Antígenos de Linfocitos T/metabolismo
11.
Biotechnol Appl Biochem ; 59(5): 367-80, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23586913

RESUMEN

The cluster of differentiation (CD) 44v6 antigen has been suggested to be involved in tumor formation, invasion, and metastasis formation, and has been observed in a majority of primary and metastatic squamous cell carcinomas of the head and neck. Probes specifically binding to this region may be utilized as tools for the challenging tasks of early detection and targeted treatments of small residual disease. In this project, an epitope-guided phage display selection of human fragment antigen-binding (Fab) fragments with affinity to the v6 sequence was performed. A selected set of Fab fragments was shown to specifically recognize increasingly complex forms of the target sequence, both in the form of a short synthetic or recombinant peptide and in the context of a purified extracellular domain of CD44. The binding was independent of known v6-sequence variation and posttranslational modifications that are common in the CD44 protein family. Furthermore, real-time interaction measurements on antibody fragments labeled with ¹²5I showed specific and high-affinity binding to the antigen present on cultured head and neck squamous cell carcinoma cells. There was no cross-reactivity toward cells that lack the target protein. As hypothesized, characterization of the interaction between Fab fragments and the targets using the mathematical tool Interaction Map revealed more heterogeneous interactions on cells than with pure proteins analyzed by surface plasmon resonance. One main candidate Fab fragment with optimal affinity for all forms of the target sequence was identified. The flexible recombinant source of the Fab fragments might aid the development of tailored molecules adapted for therapeutic or diagnostic applications in the future.


Asunto(s)
Receptores de Hialuranos/inmunología , Fragmentos de Inmunoglobulinas/inmunología , Secuencia de Aminoácidos , Línea Celular , Regulación de la Expresión Génica , Humanos , Receptores de Hialuranos/química , Cinética , Datos de Secuencia Molecular , Biblioteca de Péptidos , Isoformas de Proteínas/química , Isoformas de Proteínas/inmunología
12.
Front Oncol ; 12: 849338, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35433442

RESUMEN

Carcinoembryonic antigen (CEA) is an antigen that is highly expressed in colorectal cancers and widely used as a tumor marker. 131I and 90Y-radiolabeled anti-CEA monoclonal antibodies (mAbs) have previously been assessed for radioimmunotherapy in early clinical trials with promising results. Moreover, the heat shock protein 90 inhibitor onalespib has previously demonstrated radiotherapy potentiation effects in vivo. In the present study, a 177Lu-radiolabeled anti-CEA hT84.66-M5A mAb (M5A) conjugate was developed and the potential therapeutic effects of 177Lu-DOTA-M5A and/or onalespib were investigated. The 177Lu radiolabeling of M5A was first optimized and characterized. Binding specificity and affinity of the conjugate were then evaluated in a panel of gastrointestinal cancer cell lines. The effects on spheroid growth and cell viability, as well as molecular effects from treatments, were then assessed in several three-dimensional (3D) multicellular colorectal cancer spheroid models. Stable and reproducible radiolabeling was obtained, with labeling yields above 92%, and stability was retained at least 48 h post-radiolabeling. Antigen-specific binding of the radiolabeled conjugate was demonstrated on all CEA-positive cell lines. Dose-dependent therapeutic effects of both 177Lu-DOTA-M5A and onalespib were demonstrated in the spheroid models. Moreover, effects were potentiated in several dose combinations, where spheroid sizes and viabilities were significantly decreased compared to the corresponding monotherapies. For example, the combination treatment with 350 nM onalespib and 20 kBq 177Lu-DOTA-M5A resulted in 2.5 and 2.3 times smaller spheroids at the experimental endpoint than the corresponding monotreatments in the SNU1544 spheroid model. Synergistic effects were demonstrated in several of the more effective combinations. Molecular assessments validated the therapy results and displayed increased apoptosis in several combination treatments. In conclusion, the combination therapy of anti-CEA 177Lu-DOTA-M5A and onalespib showed enhanced therapeutic effects over the individual monotherapies for the potential treatment of colorectal cancer. Further in vitro and in vivo studies are warranted to confirm the current study findings.

13.
Sci Rep ; 12(1): 22564, 2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36581692

RESUMEN

The RON receptor tyrosine kinase is an exceptionally interesting target in oncology and immunology. It is not only overexpressed in a wide variety of tumors but also has been shown to be expressed on myeloid cells associated with tumor infiltration, where it serves to dampen tumour immune responses and reduce the efficacy of anti-CTLA4 therapy. Potent and selective inhibitory antibodies to RON might therefore both inhibit tumor cell growth and stimulate immune rejection of tumors. We derived cloned and sequenced a new panel of exceptionally avid anti-RON antibodies with picomolar binding affinities that inhibit MSP-induced RON signaling and show remarkable potency in antibody dependent cellular cytotoxicity. Antibody specificity was validated by cloning the antibody genes and creating recombinant antibodies and by the use of RON knock out cell lines. When radiolabeled with 89-Zirconium, the new antibodies 3F8 and 10G1 allow effective immuno-positron emission tomography (immunoPET) imaging of RON-expressing tumors and recognize universally exposed RON epitopes at the cell surface. The 10G1 was further developed into a novel bispecific T cell engager with a 15 pM EC50 in cytotoxic T cell killing assays.


Asunto(s)
Anticuerpos Monoclonales , Transducción de Señal , Línea Celular Tumoral , Proliferación Celular
14.
Cancer Res Commun ; 2(9): 1075-1088, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36922937

RESUMEN

The tumor suppressor protein p53 is mutated in close to 50% of human tumors and is dysregulated in many others, for instance by silencing or loss of p14ARF. Under steady-state conditions, the two E3 ligases MDM2/MDM4 interact with and inhibit the transcriptional activity of p53. Inhibition of p53-MDM2/4 interaction to reactivate p53 in tumors with wild-type (WT) p53 has therefore been considered a therapeutic strategy. Moreover, studies indicate that p53 reactivation may synergize with radiation and increase tumor immunogenicity. In vivo studies of most MDM2 inhibitors have utilized immunodeficient xenograft mouse models, preventing detailed studies of action of these molecules on the immune response. The mouse melanoma cell line B16-F10 carries functional, WT p53 but does not express the MDM2 regulator p19ARF. In this study, we tested a p53-MDM2 protein-protein interaction inhibitor, the small molecule Navtemadlin, which is currently being tested in phase II clinical trials. Using mass spectrometry-based proteomics and imaging flow cytometry, we identified specific protein expression patterns following Navtemadlin treatment of B16-F10 melanoma cells compared with their p53 CRISPR-inactivated control cells. In vitro, Navtemadlin induced a significant, p53-dependent, growth arrest but little apoptosis in B16-F10 cells. When combined with radiotherapy, Navtemadlin showed synergistic effects and increased apoptosis. In vivo, Navtemadlin treatment significantly reduced the growth of B16-F10 melanoma cells implanted in C57Bl/6 mice. Our data highlight the utility of a syngeneic B16-F10 p53+/+ mouse melanoma model for assessing existing and novel p53-MDM2/MDM4 inhibitors and in identifying new combination therapies that can efficiently eliminate tumors in vivo. Significance: The MDM2 inhibitor Navtemadlin arrests mouse tumor growth and potentiates radiotherapy. Our results support a threshold model for apoptosis induction that requires a high, prolonged p53 signaling for cancer cells to become apoptotic.


Asunto(s)
Antineoplásicos , Melanoma Experimental , Humanos , Animales , Ratones , Proteínas Proto-Oncogénicas c-mdm2 , Proteína p53 Supresora de Tumor/genética , Ubiquitina-Proteína Ligasas/metabolismo , Melanoma Experimental/tratamiento farmacológico , Modelos Animales de Enfermedad , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Ciclo Celular/metabolismo
15.
Metabolites ; 11(3)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804267

RESUMEN

Inorganic ions, such as sodium and potassium, are present in all biological matrices and are sometimes also added during sample preparation. However, these inorganic ions are known to hamper electrospray ionization -mass spectrometry (ESI-MS) applications, especially in hydrophilic interaction liquid chromatography (HILIC) where they are retained and can be detected as adducts and clusters with mobile phase components or analytes. The retention of inorganic ions leads to co-elution with analytes and as a result ion-suppression, extensive adduct formation and problems with reproducibility. In the presented work, a sample preparation method using cation exchange solid phase extraction (SPE) was developed to trap Na+ and K+ ions from human blood plasma and head and neck cancer cells for the analysis of small cationic, anionic as well as neutral organic analytes. The investigated analytes were small, hydrophilic compounds typically in focus in metabolomics studies. The samples were analyzed using full-scan HILIC-ESI-quadrupole time of flight (QTOF)-MS with an untargeted, screening approach. Method performance was evaluated using multivariate data analysis as well as relative quantifications, spiking of standards to evaluate linearity of response and post-column infusion to study ion-suppression. In blood plasma, the reduction of sodium and potassium ion concentration resulted in improved sensitivity increased signal intensity for 19 out of 28 investigated analytes, improved linearity of response, reduced ion-suppression and reduced cluster formation as well as adduct formation. Thus, the presented method has significant potential to improve data quality in metabolomics studies.

16.
Biomolecules ; 11(11)2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34827693

RESUMEN

p53 is involved in DNA damage response and is an exciting target for radiosensitization in cancer. Targeted radionuclide therapy against somatostatin receptors with 177Lu-DOTATATE is currently being explored as a treatment for neuroblastoma. The aim of this study was to investigate the novel p53-stabilizing peptide VIP116 in neuroblastoma, both as monotherapy and together with 177Lu-DOTATATE. Five neuroblastoma cell lines, including two patient-derived xenograft (PDX) lines, were characterized in monolayer cultures. Four out of five were positive for 177Lu-DOTATATE uptake. IC50 values after VIP116 treatments correlated with p53 status, ranging between 2.8-238.2 µM. IMR-32 and PDX lines LU-NB-1 and LU-NB-2 were then cultured as multicellular tumor spheroids and treated with 177Lu-DOTATATE and/or VIP116. Spheroid growth was inhibited in all spheroid models for all treatment modalities. The most pronounced effects were observed for combination treatments, mediating synergistic effects in the IMR-32 model. VIP116 and combination treatment increased p53 levels with subsequent induction of p21, Bax and cleaved caspase 3. Combination treatment resulted in a 14-fold and 1.6-fold induction of MDM2 in LU-NB-2 and IMR-32 spheroids, respectively. This, together with differential MYCN signaling, may explain the varying degree of synergy. In conclusion, VIP116 inhibited neuroblastoma cell growth, potentiated 177Lu-DOTATATE treatment and could, therefore, be a feasible treatment option for neuroblastoma.


Asunto(s)
Proteína p53 Supresora de Tumor , Humanos , Neuroblastoma , Tomografía de Emisión de Positrones , Cintigrafía , Receptores de Somatostatina
17.
J Control Release ; 331: 198-212, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33482272

RESUMEN

Colorectal cancer (CRC) is a highly prevalent disease worldwide. Patient survival is hampered by tumor relapse and the appearance of drug-resistant metastases, which are sustained by the presence of cancer stem cells (CSC). Specific delivery of anti-CSC chemotherapeutic drugs to tumors by using targeted drug delivery systems that can also target CSC sub-population might substantially improve current clinical outcomes. CD44v6 is a robust biomarker for advanced CRC and CSC, due to its functional role in tumorigenesis and cancer initiation process. Here, we show that CD44v6-targeted polymeric micelles (PM) loaded with niclosamide (NCS), a drug against CSC, is a good therapeutic strategy against colorectal CSC and circulating tumor cells (CTC) in vivo. HCT116 cells were sorted according to their CD44v6 receptor expression into CD44v6+ (high) and CDv44v6- (low) subpopulations. Accordingly, CD44v6+ cells presented stemness properties, such as overexpression of defined stemness markers (ALDH1A1, CD44v3 and CXCR4) and high capacity to form colonspheres in low attachment conditions. NCS-loaded PM functionalized with an antibody fragment against CD44v6 (Fab-CD44v6) presented adequate size, charge, and encapsulation efficiency. In addition, Fab-CD44v6 significantly increased PM internalization in CD44v6+ cells. Further, encapsulation of NCS improved its effectiveness in vitro, particularly against colonspheres, and allowed to increase its intravenous dosage in vivo by increasing the amount of NCS able to be administered without causing toxicity. Remarkably, functionalized PM accumulate in tumors and significantly reduce CTC in vivo. In conclusion, CD44v6 targeted PM meet the essential conditions to become an efficient anti-CSC therapy.


Asunto(s)
Neoplasias Colorrectales , Células Neoplásicas Circulantes , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Receptores de Hialuranos , Micelas , Células Madre Neoplásicas , Niclosamida
18.
Tumour Biol ; 31(2): 141-7, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20358427

RESUMEN

The purpose of this study was to assess the effects of the monoclonal antibody cetuximab in a panel of cultured squamous cell carcinoma cell lines. This antibody, targeting the epidermal growth factor receptor (EGFR), is emerging as a promising agent for treatment of several cancers. As this antibody comes into clinical use, the identification of predictive markers of therapeutic benefit remains a pressing issue. Cells were first characterized according to EGFR expression, cell doubling time, and BRAF and K-ras mutations. The effects of cetuximab on cell-cycle distribution, proliferation, as well as cell growth rate were then evaluated. Cetuximab decreased cell proliferation in three out of four cell lines in a time-dependent manner, and all cell lines were found to exhibit wild type K-ras and BRAF genes. A possible correlation between EGFR expression and cetuximab effect on growth inhibition rate was observed, whereas reduction of cell doubling time seemed to be more dependent on initial growth rate. In addition, other factors may further influence the long-term treatment response of cetuximab. Moreover, the time-dependent manner of cetuximab response demonstrates the importance of long-term measurements for this substance.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Carcinoma de Células Escamosas/tratamiento farmacológico , Receptores ErbB/antagonistas & inhibidores , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Anticuerpos Monoclonales Humanizados , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Ciclo Celular , Línea Celular Tumoral , Cetuximab , Receptores ErbB/análisis , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Humanos , Mutación
19.
Tumour Biol ; 31(2): 79-87, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20358420

RESUMEN

Overexpression of epidermal growth factor receptor (EGFR) in several types of malignant tumors correlates with disease progression. EGFR could, therefore, be an excellent candidate for targeted radionuclide diagnostics. However, the high natural expression of EGFR in the liver may be problematic. The aim of this study was to improve the tumor-to-liver ratio of radiolabeled epidermal growth factor (EGF) by blocking its uptake by the liver with a nonradiolabeled EGFR-targeting molecule in tumor-bearing mice. Intraperitoneally injected nonradiolabeled EGF was first evaluated as a blocking agent, preadministered at various time intervals before intravenous injection of (125)I-labeled EGF. The anti-EGFR Affibody molecule (Z(EGFR:955))(2) was then assessed as a blocking agent of (111)In-labeled EGF in a dual isotope study (50, 100, and 200 microg, preadministered 30 or 60 min before (111)In-EGF). The 30-min preadministration of nonradiolabeled EGF significantly decreased (125)I-EGF uptake in the liver, whereas uptake in the tumor remained unchanged. Furthermore, preadministration of only 50 microg (Z(EGFR:955))(2) as a blocking agent 30 min before the (111)In-EGF decreased the uptake of (111)In-EGF by the liver and increased its uptake by the tumor, thereby increasing the tumor-to-liver ratio sixfold. We conclude that the Affibody molecule (Z(EGFR:955))(2) shows promise as a blocking agent that could enhance the outcome of radionuclide-based EGFR-expressing tumor diagnostics and imaging.


Asunto(s)
Carcinoma de Células Escamosas/terapia , Factor de Crecimiento Epidérmico/farmacocinética , Receptores ErbB/antagonistas & inhibidores , Neoplasias de Cabeza y Cuello/terapia , Radioisótopos de Indio , Radioisótopos de Yodo , Hígado/metabolismo , Animales , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Receptores ErbB/análisis , Femenino , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Ratones , Ratones Endogámicos BALB C , Trasplante de Neoplasias , Distribución Tisular , Trasplante Heterólogo
20.
MAbs ; 12(1): 1792673, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32744151

RESUMEN

Based on their mechanism of action, two types of anti-CD20 antibodies are distinguished: Type I, which efficiently mediate complement-dependent cytotoxicity, and Type II, which instead are more efficient in inducing direct cell death. Several molecular characteristics of these antibodies have been suggested to underlie these different biological functions, one of these being the manner of binding to CD20 expressed on malignant B cells. However, the exact binding model on cells is unclear. In this study, the binding mechanism of the Type I therapeutic antibodies rituximab (RTX) and ofatumumab (OFA) and the Type II antibody obinutuzumab (OBI) were established by real-time interaction analysis on live cells. It was found that the degree of bivalent stabilization differed for the antibodies: OFA was stabilized the most, followed by RTX and then OBI, which had the least amount of bivalent stabilization. Bivalency inversely correlated with binding dynamics for the antibodies, with OBI displaying the most dynamic binding pattern, followed by RTX and OFA. For RTX and OBI, bivalency and binding dynamics were concentration dependent; at higher concentrations the interactions were more dynamic, whereas the percentage of antibodies that bound bivalent was less, resulting in concentration-dependent apparent affinities. This was barely noticeable for OFA, as almost all molecules bound bivalently at the tested concentrations. We conclude that the degree of bivalent binding positively correlates with the complement recruiting capacity of the investigated CD20 antibodies.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Linfocitos B/inmunología , Neoplasias Hematológicas/inmunología , Rituximab , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Monoclonales Humanizados/farmacología , Linfocitos B/patología , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta Inmunológica , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/patología , Humanos , Células K562 , Rituximab/inmunología , Rituximab/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA