Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(44): e2311057120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37883440

RESUMEN

The eukaryotic cytosolic Fe-S protein assembly (CIA) machinery inserts iron-sulfur (Fe-S) clusters into cytosolic and nuclear proteins. In the final maturation step, the Fe-S cluster is transferred to the apo-proteins by the CIA-targeting complex (CTC). However, the molecular recognition determinants of client proteins are unknown. We show that a conserved [LIM]-[DES]-[WF]-COO- tripeptide is present at the C-terminus of more than a quarter of clients or their adaptors. When present, this targeting complex recognition (TCR) motif is necessary and sufficient for binding to the CTC in vitro and for directing Fe-S cluster delivery in vivo. Remarkably, fusion of this TCR signal enables engineering of cluster maturation on a nonnative protein via recruitment of the CIA machinery. Our study advances our understanding of Fe-S protein maturation and paves the way for bioengineering novel pathways containing Fe-S enzymes.


Asunto(s)
Proteínas Hierro-Azufre , Humanos , Proteínas Hierro-Azufre/metabolismo , Citosol/metabolismo , Proteínas Nucleares/metabolismo , Hierro/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo
2.
PLoS Biol ; 16(1): e2003892, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29357351

RESUMEN

Hypersaline environments pose major challenges to their microbial residents. Microorganisms have to cope with increased osmotic pressure and low water activity and therefore require specific adaptation mechanisms. Although mechanisms have already been thoroughly investigated in the green alga Dunaliella salina and some halophilic yeasts, strategies for osmoadaptation in other protistan groups (especially heterotrophs) are neither as well known nor as deeply investigated as for their prokaryotic counterpart. This is not only due to the recent awareness of the high protistan diversity and ecological relevance in hypersaline systems, but also due to methodological shortcomings. We provide the first experimental study on haloadaptation in heterotrophic microeukaryotes, using the halophilic ciliate Schmidingerothrix salinarum as a model organism. We established three approaches to investigate fundamental adaptation strategies known from prokaryotes. First, proton nuclear magnetic resonance (1H-NMR) spectroscopy was used for the detection, identification, and quantification of intracellular compatible solutes. Second, ion-imaging with cation-specific fluorescent dyes was employed to analyze changes in the relative ion concentrations in intact cells. Third, the effect of salt concentrations on the catalytic performance of S. salinarum malate dehydrogenase (MDH) and isocitrate dehydrogenase (ICDH) was determined. 1H-NMR spectroscopy identified glycine betaine (GB) and ectoine (Ect) as the main compatible solutes in S. salinarum. Moreover, a significant positive correlation of intracellular GB and Ect concentrations and external salinity was observed. The addition of exogenous GB, Ect, and choline (Ch) stimulated the cell growth notably, indicating that S. salinarum accumulates the solutes from the external medium. Addition of external 13C2-Ch resulted in conversion to 13C2-GB, indicating biosynthesis of GB from Ch. An increase of external salinity up to 21% did not result in an increase in cytoplasmic sodium concentration in S. salinarum. This, together with the decrease in the catalytic activities of MDH and ICDH at high salt concentration, demonstrates that S. salinarum employs the salt-out strategy for haloadaptation.


Asunto(s)
Cilióforos/metabolismo , Cilióforos/fisiología , Tolerancia a la Sal/fisiología , Adaptación Fisiológica/fisiología , Aminoácidos Diaminos/biosíntesis , Betaína/metabolismo , Evolución Biológica , Catálisis , Colina , Citoplasma , Evolución Molecular , Isocitrato Deshidrogenasa/metabolismo , Espectroscopía de Resonancia Magnética , Malato Deshidrogenasa/metabolismo , Presión Osmótica , Células Procariotas , Cloruro de Sodio
3.
J Am Chem Soc ; 141(14): 5753-5765, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30879301

RESUMEN

Apd1, a cytosolic yeast protein, and Aim32, its counterpart in the mitochondrial matrix, have a C-terminal thioredoxin-like ferredoxin (TLF) domain and a widely divergent N-terminal domain. These proteins are found in bacteria, plants, fungi, and unicellular pathogenic eukaryotes but not in Metazoa. Our chemogenetic experiments demonstrate that the highly conserved cysteine and histidine residues within the C-X8-C-X24-75-H-X-G-G-H motif of the TLF domain of Apd1 and Aim32 proteins are essential for viability of yeast cells upon treatment with the redox mediators gallobenzophenone or pyrogallol, respectively. UV-vis, EPR, and Mössbauer spectroscopy of purified wild-type Apd1 and three His to Cys variants demonstrated that Cys207 and Cys216 are the ligands of the ferric ion, and His255 and His259 are the ligands of the reducible iron ion of the [2Fe-2S]2+/1+ cluster. The [2Fe-2S] center of Apd1 ( Em,7 = -164 ± 5 mV, p Kox1,2 = 7.9 ± 0.1 and 9.7 ± 0.1) differs from both dioxygenase ( Em,7 ≈ -150 mV, p Kox1,2 = 9.8 and 11.5) and cytochrome bc1/ b6 f Rieske clusters ( Em,7 ≈ +300 mV, p Kox1,2= 7.7 and 9.8). Apd1 and its engineered variants represent an unprecedented flexible system for which a stable [2Fe-2S] cluster with two histidine ligands, (two different) single histidine ligands, or only cysteinyl ligands is possible in the same protein fold. Our results define a remarkable example of convergent evolution of the [2Fe-2S] cluster containing proteins with bishistidinyl coordination.


Asunto(s)
Ferredoxinas/química , Ferredoxinas/metabolismo , Histidina , Transporte de Electrón , Dominios Proteicos
4.
Biochem J ; 473(14): 2073-85, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27166425

RESUMEN

The cytosolic iron-sulfur (Fe-S) protein assembly (CIA) machinery comprises 11 essential components and matures Fe-S proteins involved in translation and genome maintenance. Maturation is initiated by the electron transfer chain NADPH-diflavin reductase Tah18-Fe-S protein Dre2 that facilitates the de novo assembly of a [4Fe-4S] cluster on the scaffold complex Cfd1-Nbp35. Tah18-Dre2 also play a critical role in the assembly of the diferric tyrosyl radical cofactor of ribonucleotide reductase. Dre2 contains eight conserved cysteine residues as potential co-ordinating ligands for Fe-S clusters but their functional importance and the type of bound clusters is unclear. In the present study, we use a combination of mutagenesis, cell biological and biochemical as well as UV-visible, EPR and Mössbauer spectroscopic approaches to show that the yeast Dre2 cysteine residues Cys(252), Cys(263), Cys(266) and Cys(268) (motif I) bind a [2Fe-2S] cluster, whereas cysteine residues Cys(311), Cys(314), Cys(322) and Cys(325) (motif II) co-ordinate a [4Fe-4S] cluster. All of these residues with the exception of Cys(252) are essential for cell viability, cytosolic Fe-S protein activity and in vivo (55)Fe-S cluster incorporation. The N-terminal methyltransferase-like domain of Dre2 is important for proper Fe-S cluster assembly at motifs I and II, which occurs in an interdependent fashion. Our findings further resolve why recombinant Dre2 from Arabidopsis, Trypanosoma or humans has previously been isolated with a single [2Fe-2S] instead of native [2Fe-2S] plus [4Fe-4S] clusters. In the presence of oxygen, the motif I-bound [2Fe-2S] cluster is labile and the motif II-bound [4Fe-4S] cluster is readily converted into a [2Fe-2S] cluster.


Asunto(s)
Citosol/metabolismo , Proteínas Hierro-Azufre/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Cisteína/química , Cisteína/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Mutagénesis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Espectroscopía de Mossbauer
5.
Mol Microbiol ; 93(5): 897-910, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25040552

RESUMEN

Cytosolic and nuclear iron-sulphur (Fe/S) proteins include essential components involved in protein translation, DNA synthesis and DNA repair. In yeast and human cells, assembly of their Fe/S cofactor is accomplished by the CIA (cytosolic iron-sulphur protein assembly) machinery comprised of some 10 proteins. To investigate the extent of conservation of the CIA pathway, we examined its importance in the early-branching eukaryote Trypanosoma brucei that encodes all known CIA factors. Upon RNAi-mediated ablation of individual, early-acting CIA proteins, no major defects were observed in both procyclic and bloodstream stages. In contrast, parallel depletion of two CIA components was lethal, and severely diminished cytosolic aconitase activity lending support for a direct role of the CIA proteins in cytosolic Fe/S protein biogenesis. In support of this conclusion, the T. brucei CIA proteins complemented the growth defects of their respective yeast CIA depletion mutants. Finally, the T. brucei CIA factor Tah18 was characterized as a flavoprotein, while its binding partner Dre2 functions as a Fe/S protein. Together, our results demonstrate the essential and conserved function of the CIA pathway in cytosolic Fe/S protein assembly in both developmental stages of this representative of supergroup Excavata.


Asunto(s)
Citosol/metabolismo , Proteínas Hierro-Azufre/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/crecimiento & desarrollo , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/parasitología , Secuencia de Aminoácidos , Humanos , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Alineación de Secuencia , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/genética
6.
J Biol Chem ; 287(15): 12365-78, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22362766

RESUMEN

The essential P-loop NTPases Cfd1 and Nbp35 of the cytosolic iron-sulfur (Fe-S) protein assembly machinery perform a scaffold function for Fe-S cluster synthesis. Both proteins contain a nucleotide binding motif of unknown function and a C-terminal motif with four conserved cysteine residues. The latter motif defines the Mrp/Nbp35 subclass of P-loop NTPases and is suspected to be involved in transient Fe-S cluster binding. To elucidate the function of these two motifs, we first created cysteine mutant proteins of Cfd1 and Nbp35 and investigated the consequences of these mutations by genetic, cell biological, biochemical, and spectroscopic approaches. The two central cysteine residues (CPXC) of the C-terminal motif were found to be crucial for cell viability, protein function, coordination of a labile [4Fe-4S] cluster, and Cfd1-Nbp35 hetero-tetramer formation. Surprisingly, the two proximal cysteine residues were dispensable for all these functions, despite their strict evolutionary conservation. Several lines of evidence suggest that the C-terminal CPXC motifs of Cfd1-Nbp35 coordinate a bridging [4Fe-4S] cluster. Upon mutation of the nucleotide binding motifs Fe-S clusters could no longer be assembled on these proteins unless wild-type copies of Cfd1 and Nbp35 were present in trans. This result indicated that Fe-S cluster loading on these scaffold proteins is a nucleotide-dependent step. We propose that the bridging coordination of the C-terminal Fe-S cluster may be ideal for its facile assembly, labile binding, and efficient transfer to target Fe-S apoproteins, a step facilitated by the cytosolic iron-sulfur (Fe-S) protein assembly proteins Nar1 and Cia1 in vivo.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas Hierro-Azufre/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/química , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Secuencia Conservada , Complejos de Coordinación , Cisteína/genética , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Guanosina Trifosfato/química , Hierro , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Azufre
7.
Nat Chem Biol ; 8(1): 125-32, 2011 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-22119860

RESUMEN

The eukaryotic replicative DNA polymerases (Pol α, δ and ɛ) and the major DNA mutagenesis enzyme Pol ζ contain two conserved cysteine-rich metal-binding motifs (CysA and CysB) in the C-terminal domain (CTD) of their catalytic subunits. Here we demonstrate by in vivo and in vitro approaches the presence of an essential [4Fe-4S] cluster in the CysB motif of all four yeast B-family DNA polymerases. Loss of the [4Fe-4S] cofactor by cysteine ligand mutagenesis in Pol3 destabilized the CTD and abrogated interaction with the Pol31 and Pol32 subunits. Reciprocally, overexpression of accessory subunits increased the amount of the CTD-bound Fe-S cluster. This implies an important physiological role of the Fe-S cluster in polymerase complex stabilization. Further, we demonstrate that the Zn-binding CysA motif is required for PCNA-mediated Pol δ processivity. Together, our findings show that the function of eukaryotic replicative DNA polymerases crucially depends on different metallocenters for accessory subunit recruitment and replisome stability.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , Saccharomyces cerevisiae/enzimología , Dominio Catalítico , ADN Polimerasa Dirigida por ADN/química , Hierro/metabolismo , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína , Azufre/metabolismo
8.
bioRxiv ; 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37292740

RESUMEN

The eukaryotic cytosolic Fe-S protein assembly (CIA) machinery inserts iron-sulfur (Fe-S) clusters into cytosolic and nuclear proteins. In the final maturation step, the Fe-S cluster is transferred to the apo-proteins by the CIA-targeting complex (CTC). However, the molecular recognition determinants of client proteins are unknown. We show that a conserved [LIM]-[DES]-[WF]-COO- tripeptide present at the C-terminus of clients is necessary and sufficient for binding to the CTC in vitro and directing Fe-S cluster delivery in vivo. Remarkably, fusion of this TCR (target complex recognition) signal enables engineering of cluster maturation on a non-native protein via recruitment of the CIA machinery. Our study significantly advances our understanding of Fe-S protein maturation and paves the way for bioengineering applications.

9.
EMBO J ; 27(12): 1736-46, 2008 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-18497740

RESUMEN

NADH:ubiquinone oxidoreductase (complex I) of the mitochondrial inner membrane is a multi-subunit protein complex containing eight iron-sulphur (Fe-S) clusters. Little is known about the assembly of complex I and its Fe-S clusters. Here, we report the identification of a mitochondrial protein with a nucleotide-binding domain, named Ind1, that is required specifically for the effective assembly of complex I. Deletion of the IND1 open reading frame in the yeast Yarrowia lipolytica carrying an internal alternative NADH dehydrogenase resulted in slower growth and strongly decreased complex I activity, whereas the activities of other mitochondrial Fe-S enzymes, including aconitase and succinate dehydrogenase, were not affected. Two-dimensional gel electrophoresis, in vitro activity tests and electron paramagnetic resonance signals of Fe-S clusters showed that only a minor fraction (approximately 20%) of complex I was assembled in the ind1 deletion mutant. Using in vivo and in vitro approaches, we found that Ind1 can bind a [4Fe-4S] cluster that was readily transferred to an acceptor Fe-S protein. Our data suggest that Ind1 facilitates the assembly of Fe-S cofactors and subunits of complex I.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Yarrowia/metabolismo , Cisteína/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Eliminación de Gen , Hierro/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mutantes/metabolismo , Mutación/genética , Filogenia , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Nat Chem Biol ; 6(10): 758-65, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20802492

RESUMEN

Cytosolic and nuclear iron-sulfur (Fe-S) proteins play key roles in processes such as ribosome maturation, transcription and DNA repair-replication. For biosynthesis of their Fe-S clusters, a dedicated cytosolic Fe-S protein assembly (CIA) machinery is required. Here, we identify the essential flavoprotein Tah18 as a previously unrecognized CIA component and show by cell biological, biochemical and spectroscopic approaches that the complex of Tah18 and the CIA protein Dre2 is part of an electron transfer chain functioning in an early step of cytosolic Fe-S protein biogenesis. Electrons are transferred from NADPH via the FAD- and FMN-containing Tah18 to the Fe-S clusters of Dre2. This electron transfer chain is required for assembly of target but not scaffold Fe-S proteins, suggesting a need for reduction in the generation of stably inserted Fe-S clusters. The pathway is conserved in eukaryotes, as human Ndor1-Ciapin1 proteins can functionally replace yeast Tah18-Dre2.


Asunto(s)
Citosol/metabolismo , Electrones , Proteínas Hierro-Azufre/biosíntesis , Proteínas Hierro-Azufre/metabolismo , Oxidorreductasas/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Citosol/química , Transporte de Electrón , Flavoproteínas/genética , Flavoproteínas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Mitocondriales/metabolismo , NADP/metabolismo , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/metabolismo , Oxidorreductasas/deficiencia , Oxidorreductasas/genética , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Sulfurtransferasas/metabolismo , Factores de Tiempo
11.
J Bacteriol ; 192(6): 1643-51, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20097860

RESUMEN

Bacteria use three distinct systems for iron-sulfur (Fe/S) cluster biogenesis: the ISC, SUF, and NIF machineries. The ISC and SUF systems are widely distributed, and many bacteria possess both of them. In Escherichia coli, ISC is the major and constitutive system, whereas SUF is induced under iron starvation and/or oxidative stress. Genomic analysis of the Fe/S cluster biosynthesis genes in Bacillus subtilis suggests that this bacterium's genome encodes only a SUF system consisting of a sufCDSUB gene cluster and a distant sufA gene. Mutant analysis of the putative Fe/S scaffold genes sufU and sufA revealed that sufU is essential for growth under minimal standard conditions, but not sufA. The drastic growth retardation of a conditional mutant depleted of SufU was coupled with a severe reduction of aconitase and succinate dehydrogenase activities in total-cell lysates, suggesting a crucial function of SufU in Fe/S protein biogenesis. Recombinant SufU was devoid of Fe/S clusters after aerobic purification. Upon in vitro reconstitution, SufU bound an Fe/S cluster with up to approximately 1.5 Fe and S per monomer. The assembled Fe/S cluster could be transferred from SufU to the apo form of isopropylmalate isomerase Leu1, rapidly forming catalytically active [4Fe-4S]-containing holo-enzyme. In contrast to native SufU, its D43A variant carried a Fe/S cluster after aerobic purification, indicating that the cluster is stabilized by this mutation. Further, we show that apo-SufU is an activator of the cysteine desulfurase SufS by enhancing its activity about 40-fold in vitro. SufS-dependent formation of holo-SufU suggests that SufU functions as an Fe/S cluster scaffold protein tightly cooperating with the SufS cysteine desulfurase.


Asunto(s)
Bacillus subtilis/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas Hierro-Azufre/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas , Liasas de Carbono-Azufre/metabolismo , Clonación Molecular , Activación Enzimática , Hierro/metabolismo , Proteínas Hierro-Azufre/genética , Isomerasas/metabolismo , Azufre/metabolismo
12.
Biochem J ; 425(1): 207-14, 2009 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-19817716

RESUMEN

Oxygen-evolving chloroplasts possess their own iron-sulfur cluster assembly proteins including members of the SUF (sulfur mobilization) and the NFU family. Recently, the chloroplast protein HCF101 (high chlorophyll fluorescence 101) has been shown to be essential for the accumulation of the membrane complex Photosystem I and the soluble ferredoxin-thioredoxin reductases, both containing [4Fe-4S] clusters. The protein belongs to the FSC-NTPase ([4Fe-4S]-cluster-containing P-loop NTPase) superfamily, several members of which play a crucial role in Fe/S cluster biosynthesis. Although the C-terminal ISC-binding site, conserved in other members of the FSC-NTPase family, is not present in chloroplast HCF101 homologues using Mössbauer and EPR spectroscopy, we provide evidence that HCF101 binds a [4Fe-4S] cluster. 55Fe incorporation studies of mitochondrially targeted HCF101 in Saccharomyces cerevisiae confirmed the assembly of an Fe/S cluster in HCF101 in an Nfs1-dependent manner. Site-directed mutagenesis identified three HCF101-specific cysteine residues required for assembly and/or stability of the cluster. We further demonstrate that the reconstituted cluster is transiently bound and can be transferred from HCF101 to a [4Fe-4S] apoprotein. Together, our findings suggest that HCF101 may serve as a chloroplast scaffold protein that specifically assembles [4Fe-4S] clusters and transfers them to the chloroplast membrane and soluble target proteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas Hierro-Azufre/metabolismo , Oxidorreductasas/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sitios de Unión/genética , Cisteína/genética , Cisteína/metabolismo , Espectroscopía de Resonancia por Spin del Electrón/métodos , Escherichia coli/genética , Proteínas Hierro-Azufre/genética , Mitocondrias/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Oxidorreductasas/genética , Unión Proteica , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Espectrofotometría/métodos
13.
Structure ; 15(10): 1246-57, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17937914

RESUMEN

The WD40-repeat protein Cia1 is an essential, conserved member of the cytosolic iron-sulfur (Fe/S) protein assembly (CIA) machinery in eukaryotes. Here, we report the crystal structure of Saccharomyces cerevisiae Cia1 to 1.7 A resolution. The structure folds into a beta propeller with seven blades pseudo symmetrically arranged around a central axis. Structure-based sequence alignment of Cia1 proteins shows that the WD40 propeller core elements are highly conserved. Site-directed mutagenesis of amino acid residues in loop regions with high solvent accessibility identified that the conserved top surface residue R127 performs a critical function: the R127 mutant cells grew slowly and were impaired in cytosolic Fe/S protein assembly. Human Ciao1, which reportedly interacts with the Wilms' tumor suppressor, WT1, is structurally similar to yeast Cia1. We show that Ciao1 can functionally replace Cia1 and support cytosolic Fe/S protein biogenesis. Hence, our structural and biochemical studies indicate the conservation of Cia1 function in eukaryotes.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas Hierro-Azufre/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Humanos , Proteínas Hierro-Azufre/química , Metalochaperonas , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Relación Estructura-Actividad
14.
Biochemistry ; 47(31): 8195-202, 2008 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-18616280

RESUMEN

The metabolism of iron-sulfur ([Fe-S]) clusters requires a complex set of machinery that is still being defined. Mutants of Salmonella enterica lacking apbC have nutritional and biochemical properties indicative of defects in [Fe-S] cluster metabolism. ApbC is a 40.8 kDa homodimeric ATPase and as purified contains little iron and no acid-labile sulfide. An [Fe-S] cluster was reconstituted on ApbC, generating a protein that bound 2 mol of Fe and 2 mol of S (2-) per ApbC monomer and had a UV-visible absorption spectrum similar to known [4Fe-4S] cluster proteins. Holo-ApbC could rapidly and effectively activate Saccharomyces cerevisiae apo-isopropylmalate isolomerase (Leu1) in vitro, a process known to require the transfer of a [4Fe-4S] cluster. Maximum activation was achieved with 2 mol of ApbC per 1 mol of apo-Leu1. This article describes the first biochemical activity of ApbC in the context of [Fe-S] cluster metabolism. The data herein support a model in which ApbC coordinates an [4Fe-4S] cluster across its dimer interface and can transfer this cluster to an apoprotein acting as an [Fe-S] cluster scaffold protein, a function recently deduced for its eukaryotic homologues.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hierro/metabolismo , Azufre/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Hierro/química , Isomerasas/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Unión Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Azufre/química
15.
Mol Cell Biol ; 25(24): 10833-41, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16314508

RESUMEN

The assembly of cytosolic and nuclear iron-sulfur (Fe/S) proteins in yeast is dependent on the iron-sulfur cluster assembly and export machineries in mitochondria and three recently identified extramitochondrial proteins, the P-loop NTPases Cfd1 and Nbp35 and the hydrogenase-like Nar1. However, the molecular mechanism of Fe/S protein assembly in the cytosol is far from being understood, and more components are anticipated to take part in this process. Here, we have identified and functionally characterized a novel WD40 repeat protein, designated Cia1, as an essential component required for Fe/S cluster assembly in vivo on cytosolic and nuclear, but not mitochondrial, Fe/S proteins. Surprisingly, Nbp35 and Nar1, themselves Fe/S proteins, could assemble their Fe/S clusters in the absence of Cia1, demonstrating that these components act before Cia1. Consequently, Cia1 is involved in a late step of Fe/S cluster incorporation into target proteins. Coimmunoprecipitation assays demonstrated a specific interaction between Cia1 and Nar1. In contrast to the mostly cytosolic Nar1, Cia1 is preferentially localized to the nucleus, suggesting an additional function of Cia1. Taken together, our results indicate that Cia1 is a new member of the cytosolic Fe/S protein assembly (CIA) machinery participating in a step after Nbp35 and Nar1.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/análisis , Proteínas de Ciclo Celular/genética , Núcleo Celular/química , Proteínas de Unión al GTP/metabolismo , Eliminación de Gen , Homeostasis , Mitocondrias/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/genética
16.
Biochim Biophys Acta ; 1763(7): 652-67, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16843540

RESUMEN

Iron-sulfur (Fe/S) clusters are important cofactors of numerous proteins involved in electron transfer, metabolic and regulatory processes. In eukaryotic cells, known Fe/S proteins are located within mitochondria, the nucleus and the cytosol. Over the past years the molecular basis of Fe/S cluster synthesis and incorporation into apoproteins in a living cell has started to become elucidated. Biogenesis of these simple inorganic cofactors is surprisingly complex and, in eukaryotes such as Saccharomyces cerevisiae, is accomplished by three distinct proteinaceous machineries. The "iron-sulfur cluster (ISC) assembly machinery" of mitochondria was inherited from the bacterial ancestor of mitochondria. ISC components are conserved in eukaryotes from yeast to man. The key principle of biosynthesis is the assembly of the Fe/S cluster on a scaffold protein before it is transferred to target apoproteins. Cytosolic and nuclear Fe/S protein maturation also requires the function of the mitochondrial ISC assembly system. It is believed that mitochondria contribute a still unknown compound to biogenesis outside the organelle. This compound is exported by the mitochondrial "ISC export machinery" and utilised by the "cytosolic iron-sulfur protein assembly (CIA) machinery". Components of these two latter systems are also highly conserved in eukaryotes. Defects in the mitochondrial ISC assembly and export systems, but not in the CIA machinery have a strong impact on cellular iron uptake and intracellular iron distribution showing that mitochondria are crucial for both cellular Fe/S protein assembly and iron homeostasis.


Asunto(s)
Núcleo Celular/metabolismo , Citosol/metabolismo , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo
17.
Eur J Cell Biol ; 94(7-9): 280-91, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26099175

RESUMEN

Mitochondria have been derived from alpha-bacterial endosymbionts during the evolution of eukaryotes. Numerous bacterial functions have been maintained inside the organelles including fatty acid degradation, citric acid cycle, oxidative phosphorylation, and the synthesis of heme or lipoic acid cofactors. Additionally, mitochondria have inherited the bacterial iron-sulfur cluster assembly (ISC) machinery. Many of the ISC components are essential for cell viability because they generate a still unknown, sulfur-containing compound for the assembly of cytosolic and nuclear Fe/S proteins that perform important functions in, e.g., protein translation, DNA synthesis and repair, and chromosome segregation. The sulfur-containing compound is exported by the mitochondrial ABC transporter Atm1 (human ABCB7) and utilized by components of the cytosolic iron-sulfur protein assembly (CIA) machinery. An appealing minimal model for the striking compartmentation of eukaryotic Fe/S protein biogenesis is provided by organisms that contain mitosomes instead of mitochondria. Mitosomes have been derived from mitochondria by reductive evolution, during which they have lost virtually all classical mitochondrial tasks. Nevertheless, mitosomes harbor all core ISC components which presumably have been maintained for assisting the maturation of cytosolic-nuclear Fe/S proteins. The current review is centered around the Atm1 export process. We present an overview on the mitochondrial requirements for the export reaction, summarize recent insights into the 3D structure and potential mechanism of Atm1, and explain how the CIA machinery uses the mitochondrial export product for the assembly of cytosolic and nuclear Fe/S proteins.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Citosol/metabolismo , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Núcleo Celular/metabolismo , Humanos , Proteínas de Transporte de Membrana/metabolismo , Transporte de Proteínas/fisiología
18.
Structure ; 23(1): 149-160, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25543256

RESUMEN

The small, highly conserved Kti11 alias Dph3 protein encoded by the Kluyveromyces lactis killer toxin insensitive gene KTI11/DPH3 is involved in the diphthamide modification of eukaryotic elongation factor 2 and, together with Kti13, in Elongator-dependent tRNA wobble base modifications, thereby affecting the speed and accuracy of protein biosynthesis through two distinct mechanisms. We have solved the crystal structures of Saccharomyces cerevisiae Kti13 and the Kti11/Kti13 heterodimer at 2.4 and 2.9 Å resolution, respectively, and validated interacting residues through mutational analysis in vitro and in vivo. We show that metal coordination by Kti11 and its heterodimerization with Kti13 are essential for both translational control mechanisms. Our structural and functional analyses identify Kti13 as an additional component of the diphthamide modification pathway and provide insight into the molecular mechanisms that allow the Kti11/Kti13 heterodimer to coregulate two consecutive steps in ribosomal protein synthesis.


Asunto(s)
Factor 2 de Elongación Peptídica/metabolismo , ARN de Transferencia/metabolismo , Proteínas Represoras/química , Proteínas Represoras/fisiología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiología , Modelos Moleculares , Organismos Modificados Genéticamente , Factor 2 de Elongación Peptídica/química , Biosíntesis de Proteínas/genética , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Procesamiento Postranscripcional del ARN/genética , ARN de Transferencia/química , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Trends Cell Biol ; 24(5): 303-12, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24314740

RESUMEN

Eukaryotic cells contain numerous cytosolic and nuclear iron-sulfur (Fe/S) proteins that perform key functions in metabolic catalysis, iron regulation, protein translation, DNA synthesis, and DNA repair. Synthesis of Fe/S clusters and their insertion into apoproteins are essential for viability and are conserved in eukaryotes. The process is catalyzed in two major steps by the CIA (cytosolic iron-sulfur protein assembly) machinery encompassing nine known proteins. First, a [4Fe-4S] cluster is assembled on a scaffold complex. This step requires a sulfur-containing compound from mitochondria and reducing equivalents from an electron transfer chain. Second, the Fe/S cluster is transferred from the scaffold to specific apoproteins by the CIA targeting complex. This review summarizes our molecular knowledge on CIA protein function during the assembly process.


Asunto(s)
Proteínas Hierro-Azufre/biosíntesis , Animales , Sitios de Unión , Citosol/metabolismo , Inestabilidad Genómica , Humanos , Proteínas Hierro-Azufre/fisiología , Mitocondrias/metabolismo , Chaperonas Moleculares/fisiología , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/fisiología , Biosíntesis de Proteínas , Pliegue de Proteína
20.
Philos Trans R Soc Lond B Biol Sci ; 368(1622): 20120259, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23754812

RESUMEN

The assembly of iron-sulfur (Fe-S) clusters requires dedicated protein factors inside the living cell. Striking similarities between prokaryotic and eukaryotic assembly proteins suggest that plant cells inherited two different pathways through endosymbiosis: the ISC pathway in mitochondria and the SUF pathway in plastids. Fe-S proteins are also found in the cytosol and nucleus, but little is known about how they are assembled in plant cells. Here, we show that neither plastid assembly proteins nor the cytosolic cysteine desulfurase ABA3 are required for the activity of cytosolic aconitase, which depends on a [4Fe-4S] cluster. In contrast, cytosolic aconitase activity depended on the mitochondrial cysteine desulfurase NFS1 and the mitochondrial transporter ATM3. In addition, we were able to complement a yeast mutant in the cytosolic Fe-S cluster assembly pathway, dre2, with the Arabidopsis homologue AtDRE2, but only when expressed together with the diflavin reductase AtTAH18. Spectroscopic characterization showed that purified AtDRE2 could bind up to two Fe-S clusters. Purified AtTAH18 bound one flavin per molecule and was able to accept electrons from NAD(P)H. These results suggest that the proteins involved in cytosolic Fe-S cluster assembly are highly conserved, and that dependence on the mitochondria arose before the second endosymbiosis event leading to plastids.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas Hierro-Azufre/metabolismo , Arabidopsis/embriología , Proteínas de Arabidopsis/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Mitocondrias/metabolismo , Plastidios/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA