Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Pediatr Surg Int ; 40(1): 69, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441774

RESUMEN

PURPOSE: An overexpression of nerve growth factor (NGF) in the urothelium is discussed to lead to neuronal hyperinnervation of the bladder detrusor. The aim was to assess the sensory and sympathetic innervation of the detrusor in unclosed exstrophic bladders patients with known overexpression of NGF in the urothelium. METHODS: Full-thickness bladder biopsies were prospectively obtained from 34 infants at delayed primary bladder closure between 01/2015 and 04/2020. The bladder biopsies were immunohistochemically stained with antibodies against S100, calcitonin gene-related peptide (anti-CGRP), Neurofilament 200 (anti-NF200), and tyrosine-hydroxylase (anti-TH). Specimens from 6 children with congenital vesicoureterorenal reflux (VUR) served as controls. RESULTS: There was no statistically significant difference in nerve fiber density in any of the immunohistochemical assessments (anti-S100 [p = 0.210], anti-CGRP [p = 0.897], anti-NF200 [p = 0.897]), and anti-TH [p = 0.956]) between patients with BE and patients with VUR. However, we observed a trend toward lower nerve fiber densities in exstrophic detrusor. CONCLUSION: Overall our results showed an unharmed innervation pattern in this cohort but a lower density of nerve fibers in the detrusor compared to controls. Further studies in patients after successful primary closure are needed to clarify the potential impact of the urothelial overexpression of NGF modulating the innervation pattern in exstrophic bladders.


Asunto(s)
Extrofia de la Vejiga , Niño , Humanos , Lactante , Extrofia de la Vejiga/cirugía , Músculos , Factor de Crecimiento Nervioso , Vejiga Urinaria , Urotelio
2.
Cephalalgia ; 42(2): 176-180, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34407648

RESUMEN

Clinical publications show consistently that headache is a common symptom in the coronavirus disease of 2019 (COVID-19). Several studies specifically investigated headache symptomatology and associated features in patients with COVID-19. The headache is frequently debilitating with manifold characters including migraine-like characteristics. Studies suggested that COVID-19 patients with headache vs. those without headache are more likely to have anosmia. We present a pathophysiological hypothesis which may explain this phenomenon, discuss current hypotheses about how the coronavirus SARS-CoV-2 enters the central nervous system and suggest that activation of the trigeminal nerve may contribute to both headache and anosmia in COVID-19.


Asunto(s)
COVID-19 , Trastornos Migrañosos , Trastornos del Olfato , Anosmia , Cefalea/etiología , Humanos , SARS-CoV-2
3.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R328-R337, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34231420

RESUMEN

The sympathetic nervous system (SNS) plays a crucial role in the regulation of renal and hepatic functions. Although sympathetic nerves to the kidney and liver have been identified in many species, specific details are lacking in the mouse. In the absence of detailed information of sympathetic prevertebral innervation of specific organs, selective manipulation of a specific function will remain challenging. Despite providing major postganglionic inputs to abdominal organs, limited data are available about the mouse celiac-superior mesenteric complex. We used tyrosine hydroxylase (TH) and dopamine ß-hydroxylase (DbH) reporter mice to visualize abdominal prevertebral ganglia. We found that both the TH and DbH reporter mice are useful models for identification of ganglia and nerve bundles. We further tested if the celiac-superior mesenteric complex provides differential inputs to the mouse kidney and liver. The retrograde viral tracer, pseudorabies virus (PRV)-152 was injected into the cortex of the left kidney or the main lobe of the liver to identify kidney-projecting and liver-projecting neurons in the celiac-superior mesenteric complex. iDISCO immunostaining and tissue clearing were used to visualize unprecedented anatomical detail of kidney-related and liver-related postganglionic neurons in the celiac-superior mesenteric complex and aorticorenal and suprarenal ganglia compared with TH-positive neurons. Kidney-projecting neurons were restricted to the suprarenal and aorticorenal ganglia, whereas only sparse labeling was observed in the celiac-superior mesenteric complex. In contrast, liver-projecting postganglionic neurons were observed in the celiac-superior mesenteric complex and aorticorenal and suprarenal ganglia, suggesting spatial separation between the sympathetic innervation of the mouse kidney and liver.


Asunto(s)
Ganglios Simpáticos/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Sistema Nervioso Simpático/metabolismo , Animales , Dopamina beta-Hidroxilasa/metabolismo , Riñón/inervación , Masculino , Ratones , Neuronas/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
4.
Chemistry ; 27(5): 1655-1669, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33459437

RESUMEN

A new series of shell-by-shell (SbS)-functionalized Al2 O3 nanoparticles (NPs) containing a perylene core in the organic interlayer as a fluorescence marker is introduced. Initially, the NPs were functionalized with both, a fluorescent perylene phosphonic acid derivative, together with the lipophilic hexadecylphosphonic acid or the fluorophilic (1 H,1 H,2 H,2H-perfluorodecyl)phosphonic acid. The lipophilic first-shell functionalized NPs were further implemented with amphiphiles built of aliphatic chains and polar head-groups. However, the fluorophilic NPs were combined with amphiphiles consisting of fluorocarbon tails and polar head-groups. Depending on the nature of the combined phosphonic acids and the amphiphiles, tuning of the perylene fluorescence can be accomplished due variations of supramolecular organization with the shell interface. Because the SbS-functionalized NPs dispose excellent dispersibility in water and in biological media, two sorts of NPs with different surface properties were tested with respect to biological fluorescent imaging applications. Depending on the agglomeration of the NPs, the cellular uptake differs. The uptake of larger agglomerates is facilitated by endocytosis, whereas individualized NPs cross directly the cellular membrane. Also, the larger agglomerates were preferentially incorporated by all tested cells.

5.
Eur Arch Otorhinolaryngol ; 278(10): 3801-3811, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33320296

RESUMEN

PURPOSE: It is still in question whether head oscillation damping during walking forms a part of the vestibular function. The anatomical pathway from the vestibular system to the neck muscles via the medial vestibulospinal tract (MVST) is well known but there is a lack of knowledge of the exact influence and modulation of each other in daily life activities. METHODS: (I) We fixed a head-neck unit of a human cadaver specimen in a steal frame to determine the required pitch-torque for a horizontal head position. The mean value of the acquired pitch-torque was 0.54 Nm. (II) On a motorized treadmill we acquired kinematic data of the head, the sternum and both feet by wireless 3D IMUs for seven asymptomatic volunteers. Subsequently three randomized task conditions were performed. Condition 1 was walking without any irritation. Condition 2 imitated a sacculus irritation using a standardized cVEMP signal. The third condition used an electric neck muscle-irritation (TENS). The data were analyzed by the simulation environment software OpenSim 4.0. RESULTS: 8 neck muscle pairs were identified. By performing three different conditions we observed some highly significant deviations of the neck muscle peak torques. Analysing Euler angles, we found during walking a LARP and RALP head pendulum, which also was strongly perturbated. CONCLUSION: Particularly the pitch-down head oscillation damping is the most challenging one for neck muscles, especially under biomechanical concerns. Mainly via MVST motor activity of neck muscles  might be modulated by vestibular motor signals. Two simultaneous proprioceptor effects might optimize head oscillation damping. One might be a proprioceptive feedback loop to the vestibular nucleus. Another might trigger the cervicocollic reflex (CCR).


Asunto(s)
Músculos del Cuello , Vestíbulo del Laberinto , Cabeza , Humanos , Proyectos Piloto , Caminata
6.
Int J Mol Sci ; 22(6)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33810144

RESUMEN

Multiple sclerosis (MS) has been considered to specifically affect the central nervous system (CNS) for a long time. As autonomic dysfunction including dysphagia can occur as accompanying phenomena in patients, the enteric nervous system has been attracting increasing attention over the past years. The aim of this study was to identify glial and myelin markers as potential target structures for autoimmune processes in the esophagus. RT-PCR analysis revealed glial fibrillary acidic protein (GFAP), proteolipid protein (PLP), and myelin basic protein (MBP) expression, but an absence of myelin oligodendrocyte glycoprotein (MOG) in the murine esophagus. Selected immunohistochemistry for GFAP, PLP, and MBP including transgenic mice with cell-type specific expression of PLP and GFAP supported these results by detection of (1) GFAP, PLP, and MBP in Schwann cells in skeletal muscle and esophagus; (2) GFAP, PLP, but no MBP in perisynaptic Schwann cells of skeletal and esophageal motor endplates; (3) GFAP and PLP, but no MBP in glial cells surrounding esophageal myenteric neurons; and (4) PLP, but no GFAP and MBP in enteric glial cells forming a network in the esophagus. Our results pave the way for further investigations regarding the involvement of esophageal glial cells in the pathogenesis of dysphagia in MS.


Asunto(s)
Biomarcadores , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo , Esófago/metabolismo , Expresión Génica , Neuroglía/inmunología , Neuroglía/metabolismo , Animales , Sistema Nervioso Central/patología , Femenino , Técnica del Anticuerpo Fluorescente , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunohistoquímica , Masculino , Ratones , Ratones Transgénicos , Esclerosis Múltiple/etiología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Eur J Neurosci ; 47(3): 201-210, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29247491

RESUMEN

Spices in food and beverages and compounds in tobacco smoke interact with sensory irritant receptors of the transient receptor potential (TRP) cation channel family. TRPV1 (vanilloid type 1), TRPA1 (ankyrin 1) and TRPM8 (melastatin 8) not only elicit action potential signaling through trigeminal nerves, eventually evoking pungent or cooling sensations, but by their calcium conductance they also stimulate the release of calcitonin gene-related peptide (CGRP). This is measured as an index of neuronal activation to elucidate the chemo- and thermosensory transduction in the isolated mouse buccal mucosa of wild types and pertinent knockouts. We found that the lipophilic capsaicin, mustard oil and menthol effectively get access to the nerve endings below the multilayered squamous epithelium, while cigarette smoke and its gaseous phase were weakly effective releasing CGRP. The hydrophilic nicotine was ineffective unless applied unprotonated in alkaline (pH9) solution, activating TRPA1 and TRPV1. Also, mustard oil activated both these irritant receptors in millimolar but only TRPA1 in micromolar concentrations; in combination (1 mm) with heat (45 °C), it showed supraadditive, that is heat sensitizing, effects in TRPV1 and TRPA1 knockouts, suggesting action on an unknown heat-activated channel and mustard oil receptor. Menthol caused little CGRP release by itself, but in subliminal concentration (2 mm), it enabled a robust cold response that was absent in TRPM8-/- but retained in TRPA1-/- and strongly reduced by TRPM8 inhibitors. In conclusion, all three relevant irritant receptors are functionally expressed in the oral mucosa and play their specific roles in inducing neurogenic inflammation and sensitization to heat and cold.


Asunto(s)
Capsaicina/farmacología , Mucosa Bucal/efectos de los fármacos , Canal Catiónico TRPA1/efectos de los fármacos , Canales Catiónicos TRPM/efectos de los fármacos , Canales Catiónicos TRPV/efectos de los fármacos , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Ratones , Células Receptoras Sensoriales/metabolismo , Canales de Potencial de Receptor Transitorio/efectos de los fármacos
8.
Biochem Biophys Res Commun ; 498(4): 855-861, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29551683

RESUMEN

Silicon nanoparticles with sizes between were synthesized through wet-chemistry procedures using diverse phase transfer reagents. On the other hand, the preparation of iron-doped silicon nanoparticles was carried out using the precursor Na4Si4 containing 5% Fe. Biocompatibility of all silicon nanoparticle samples was achieved by surface-stabilizing with (3-aminopropyl)triethoxysilane. These surface structures provided positive surface charges which facilitated electrostatic binding to the negatively charged biological membranes. The mode of interaction with membranes, being either incorporation or just attachment, was found to depend on the nanoparticle size. The smallest silicon nanoparticles (ca. 1.5 nm) were embedded in the mitochondrial membrane in MCF-7 cells. When interacting with X-rays these silicon nanoparticles were observed to enhance the superoxide formation upon depolarizing the mitochondrial membrane. X-ray irradiation of MCF-7 cells loaded with the larger silicon nanoparticles was shown to increase the intracellular singlet oxygen generation. The doping of the silicon nanoparticles with iron led to additional production of hydroxyl radicals via the Fenton reaction.


Asunto(s)
Nanopartículas/metabolismo , Fármacos Sensibilizantes a Radiaciones/química , Radioterapia/métodos , Rayos X , Membrana Celular/metabolismo , Humanos , Radical Hidroxilo/metabolismo , Membranas Intracelulares/metabolismo , Hierro , Células MCF-7 , Nanopartículas/química , Propilaminas , Silanos , Silicio , Electricidad Estática , Superóxidos/metabolismo , Propiedades de Superficie
9.
Histochem Cell Biol ; 150(6): 703-709, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30250972

RESUMEN

Recent advances in neurogastroenterology have extended and refined our knowledge on the roles monoamines play in physiology and pathophysiology of the gastrointestinal tract. The catecholamine noradrenaline, as the primary transmitter of postganglionic sympathetic neurons, orchestrates motility and secretory reflexes and controls arterial perfusion as well as immune functions. The catecholamine dopamine is produced by a subpopulation of enteric neurons which possibly use it as transmitter. Serotonin, largely produced by enterochromaffin cells and to a small extent by enteric neurons profoundly affects gut motility, enteric neuron development and is also involved in immunomodulation. However, its mode of action and the relative contribution of non-neuronal versus neuronal serotonin was recently subject to debate again. Histamine, although entirely of non-neuronal origin, is pivotal for gastrointestinal neuroimmunomodulation besides its paracrine effect in gastric HCl production.


Asunto(s)
Aminas/metabolismo , Sistema Nervioso Entérico/metabolismo , Catecolaminas/biosíntesis , Catecolaminas/química , Humanos , Serotonina/biosíntesis , Serotonina/química
10.
Exp Eye Res ; 170: 8-12, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29448041

RESUMEN

PURPOSE: Ocular autonomic control is mediated by sympathetic and parasympathetic nerve fibres. Their interactions are complemented by primary afferent nerve fibers of and intrinsic choroidal neurons (ICN). As the vasodilatative neuropeptide, vasoactive intestinal peptide (VIP), is expressed in extrinsic and intrinsic ocular neurons, it is of special interest in ophthalmic research. Since circadian changes of ocular blood flow are known in humans and birds, this study aimed at investigating VIP expression at different daytimes in chicken choroid, the preferred model species in ICN research. METHODS: 12 eyes of 12 chickens were retrieved, slaughtered at 8.00-9.30 a.m. (n = 6) and 8.00 p.m. (n = 6), respectively, and choroidal wholemounts were prepared for immunofluorescence of VIP. VIP-positive ICN of both groups were quantified and density of VIP-positive axons assessed semi-quantitatively. In 28 additional eyes retrieved in the morning (n = 14) and evening (n = 14), choroidal VIP content was determined by ELISA. Morning and evening data were analyzed statistically. NADPH-diaphorase (NADPH-d, ICN cell marker) was done at additional 12 whole mount choroids of 12 chicken, retrieved in the morning (n = 6) and evening (n = 6). RESULTS: (1) Numbers of VIP positive neurons differed significantly between morning: (239.17 ±â€¯113.9) and evening: (550.83 ±â€¯245.7; p = 0.018). (2) Numbers of VIP-positive perikarya were significantly more accumulated in the temporal part of the choroid in the evening than in the morning (p = 0.026). (3) VIP positive axon density was found to be similar throughout the choroid in the morning and evening. (4) Number of NADPH-d positive neurons was not significantly different between morning (848.8 ±â€¯399.5) and evening (945.8 ±â€¯622.1, p > 0.05). (5) ELISA demonstrated a significant difference of VIP content (p = 0.012) in tissues harvested in the morning (145.41 ±â€¯43.3 pg/ml) compared to evening (221.44 ±â€¯106.3 pg/ml). CONCLUSIONS: As VIP positive axon density was similar in the morning and the evening throughout the choroid, PPG and ICN seemed to contribute equally to the axon network. Yet, changes in the total choroidal VIP content, the numbers of VIP positive perikarya, reflecting the intracellular VIP content, and their topographical distribution at two different days-times argue for a different status of activation of both neuronal sources in contrast to the equal amount of NADPHD-d positive neurons. The higher VIP content in the evening, compared to the morning, correlates with a known circadian rhythm of a lower IOP and a higher choroidal thickness at night. Thus, these changes may argue for a potential role of ICN in the regulation of ocular homeostasis and integrity.


Asunto(s)
Coroides/inervación , Neuronas/metabolismo , Fotoperiodo , Péptido Intestinal Vasoactivo/metabolismo , Animales , Biomarcadores/metabolismo , Recuento de Células , Pollos , Ritmo Circadiano/fisiología , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente Indirecta , Modelos Animales , NADPH Deshidrogenasa/metabolismo
11.
Histochem Cell Biol ; 148(2): 207-216, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28357579

RESUMEN

Patients suffering from chagasic megacolon must have an intact mucosal barrier as they survive this chronic disease for decades. A key structure of the mucosal barrier are epithelial cells. Vasoactive-intestinal-peptide (VIP)-positive nerve fibres are involved in influencing, e.g., epithelial cell proliferation, mucus secretion (e.g., mucin 2 and trefoil factor 3 of goblet cells) and inflammation or autoimmunity, all putative and/or known factors altered in chagasic megacolon. We analyzed qualitatively and quantitatively goblet cells, their specific markers, such as mucin 2 (MUC2) and trefoil factor 3 (TFF3) and enterocytes, the relation of VIP-immunoreactive nerve fibres to the epithelia, the distribution of gelsolin, a protein involved in chronic inflammation processes in the epithelia, and the proliferation rate of epithelial cells by combined 4',6-diamidino-2-phenylindole (DAPI) and phosphohistone-H3 (PHH3) staining. Goblet cells were the dominating epithelial cell type. They accounted for 38.4% of all epithelial cells in controls and changed to 58.9% in the megacolonic parts. In contrast to the overall expression in goblet cells of control epithelia, TFF3 was confined to goblet cells at the base of the crypts whereas MUC2 was found only in luminal goblet cells. Gelsolin-positive goblet cells were predominantly recognized within the controls. Finally, the mean value of mitosis increased from 1.5% within the controls up to 2.6% in the anal parts of the chagasic sepcimens. Taken together, increased cell proliferation, preponderance of goblet cells, differential MUC 2, and TFF 3 expression might all be factors maintaining an intact mucosal barrier within chagasic megacolon.


Asunto(s)
Enfermedad de Chagas/patología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Mucosa Intestinal/patología , Megacolon/patología , Anciano , Proliferación Celular , Enfermedad de Chagas/metabolismo , Enfermedad de Chagas/cirugía , Femenino , Humanos , Mucosa Intestinal/metabolismo , Masculino , Megacolon/metabolismo , Megacolon/cirugía
12.
Mol Med ; 21(1): 1011-1024, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26650186

RESUMEN

Gastro-esophageal reflux disease (GERD) is one of the most common disorders in gastroenterology. Patients present with or without increased acid exposure indicating a nonuniform etiology. Thus, the common treatment with proton pump inhibitors (PPIs) fails to control symptoms in up to 40% of patients. To further elucidate the pathophysiology of the condition and explore new treatment targets, transcriptomics, proteomics and histological methods were applied to a surgically induced subchronic reflux esophagitis model in Wistar rats after treatment with either omeprazole (PPI) or STW5, a herbal preparation shown to ameliorate esophagitis without affecting refluxate pH. The normal human esophageal squamous cell line HET-1A and human endoscopic biopsies were used to confirm our findings to the G-protein-coupled receptor (GPR) 84 in human tissue. Both treatments reduced reflux-induced macroscopic and microscopic lesions of the esophagi as well as known proinflammatory cytokines. Proteomic and transcriptomic analyses identified CINC1-3, MIP-1/3α, MIG, RANTES and interleukin (IL)-1ß as prominent mediators in GERD. Most regulated cyto-/chemokines are linked to the TREM-1 signaling pathway. The fatty acid receptor GPR84 was upregulated in esophagitis but significantly decreased in treated groups, a finding supported by Western blot and immunohistochemistry in both rat tissue and HET-1A cells. GPR84 was also found to be significantly upregulated in patients with grade B reflux esophagitis. The expression of GPR84 in esophageal tissue and its potential involvement in GERD are reported for the first time. IL-8 (CINC1-3) and the TREM-1 signaling pathway are proposed, besides GPR84, to play an important role in the pathogenesis of GERD.org.

13.
Histochem Cell Biol ; 146(6): 721-735, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27678007

RESUMEN

The existence of a distinct ganglionated myenteric plexus between the two layers of the striated tunica muscularis of the mammalian esophagus has represented an enigma for quite a while. Although an enteric co-innervation of vagally innervated motor endplates in the esophagus has been suggested repeatedly, it was not possible until recently to demonstrate this dual innervation. Twenty-two years ago, we were able to demonstrate that motor endplates in the rat esophagus receive dual innervation from both vagal nerve fibers originating in the brain stem and from varicose enteric nerve fibers originating in the myenteric plexus. Meanwhile, a considerable amount of data has been gathered on enteric co-innervation and its occurrence in the esophagus of a variety of species including humans, its neurochemistry, spatial relationships on motor endplates, ontogeny and possible functional roles. These data underline the significance of this newly discovered innervation component, although its function in vivo is still largely unknown. The aim of this review, which is an update of our previous paper (Wörl and Neuhuber in Histochem Cell Biol 123(2):117-130. doi: 10.1007/s00418-005-0764-7 , 2005a), is to summarize the current knowledge about enteric co-innervation of esophageal striated muscle and to provide some hints as to its functional significance.


Asunto(s)
Sistema Nervioso Entérico/metabolismo , Esófago/metabolismo , Músculo Estriado/metabolismo , Animales , Sistema Nervioso Entérico/citología , Esófago/citología , Humanos
14.
Histochem Cell Biol ; 145(5): 573-85, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26794326

RESUMEN

Enteric co-innervation is a peculiar innervation pattern of striated esophageal musculature. Both anatomical and functional data on enteric co-innervation related to various transmitters have been collected in different species, although its function remains enigmatic. However, it is unclear whether catecholaminergic components are involved in such a co-innervation. Thus, we examined to identify catecholaminergic neuronal elements and clarify their relationship to other innervation components in the esophagus, using immunohistochemistry with antibodies against tyrosine hydroxylase (TH), vesicular acetylcholine transporter (VAChT), choline acetyltransferase (ChAT) and protein gene product 9.5 (PGP 9.5), α-bungarotoxin (α-BT) and PCR with primers for amplification of cDNA encoding TH and dopamine-ß-hydroxylase (DBH). TH-positive nerve fibers were abundant throughout the myenteric plexus and localized on about 14% of α-BT-labelled motor endplates differing from VAChT-positive vagal nerve terminals. TH-positive perikarya represented a subpopulation of only about 2.8% of all PGP 9.5-positive myenteric neurons. Analysis of mRNA showed both TH and DBH transcripts in the mouse esophagus. As ChAT-positive neurons in the compact formation of the nucleus ambiguus were negative for TH, the TH-positive nerve varicosities on motor endplates are presumably of enteric origin, although a sympathetic origin cannot be excluded. In the medulla oblongata, the cholinergic ambiguus neurons were densely supplied with TH-positive varicosities. Thus, catecholamines may modulate vagal motor innervation of esophageal-striated muscles not only at the peripheral level via enteric co-innervation but also at the central level via projections to the nucleus ambiguus. As Parkinson's disease, with a loss of central dopaminergic neurons, also affects the enteric nervous system and dysphagia is prevalent in patients with this disease, investigation of intrinsic catecholamines in the esophagus may be worthwhile to understand such a symptom.


Asunto(s)
Catecolaminas/metabolismo , Esófago/inervación , Músculo Estriado/inervación , Neuronas/metabolismo , Animales , Esófago/citología , Femenino , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Estriado/citología , Neuronas/citología
15.
Am J Physiol Regul Integr Comp Physiol ; 310(9): R806-18, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26911463

RESUMEN

Renal denervation (DNX) is a treatment for resistant arterial hypertension. Efferent sympathetic nerves regrow, but reinnervation by renal afferent nerves has only recently been shown in the renal pelvis of rats after unilateral DNX. We examined intrarenal perivascular afferent and sympathetic efferent nerves after unilateral surgical DNX. Tyrosine hydroxylase (TH), CGRP, and smooth muscle actin were identified in kidney sections from 12 Sprague-Dawley rats, to distinguish afferents, efferents, and vasculature. DNX kidneys and nondenervated kidneys were examined 1, 4, and 12 wk after DNX. Tissue levels of CGRP and norepinephrine (NE) were measured with ELISA and mass spectrometry, respectively. DNX decreased TH and CGRP labeling by 90% and 95%, respectively (P < 0.05) within 1 wk. After 12 wk TH and CGRP labeling returned to baseline with a shift toward afferent innervation (P < 0.05). Nondenervated kidneys showed a doubling of both labels within 12 wk (P < 0.05). CGRP content decreased by 72% [3.2 ± 0.3 vs. 0.9 ± 0.2 ng/gkidney; P < 0.05] and NA by 78% [1.1 ± 0.1 vs. 0.2 ± 0.1 pmol/mgkidney; P < 0.05] 1 wk after DNX. After 12 wk, CGRP, but not NE, content in DNX kidneys was fully recovered, with no changes in the nondenervated kidneys. The use of phenol in the DNX procedure did not influence this result. We found morphological reinnervation and transmitter recovery of afferents within 12 wk after DNX. Despite morphological evidence of sympathetic regrowth, NE content did not fully recover. These results suggest a long-term net surplus of afferent influence on the DNX kidney may be contributing to the blood pressure lowering effect of DNX.


Asunto(s)
Riñón/inervación , Regeneración Nerviosa/fisiología , Simpatectomía , Actinas/genética , Actinas/metabolismo , Animales , Péptido Relacionado con Gen de Calcitonina/genética , Péptido Relacionado con Gen de Calcitonina/metabolismo , Regulación de la Expresión Génica , Masculino , Neuronas Aferentes/fisiología , Neuronas Eferentes/fisiología , Ratas , Ratas Sprague-Dawley , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
16.
Chem Senses ; 41(9): 783-794, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27581615

RESUMEN

The dynamics of early-stage cortical and subcortical responses in the human brain to odor stimulation are currently unknown. The objective of the present study was to analyze spatiotemporal patterns of human brain activity during odor perception using magnetoencephalography (MEG). In 12 normosmic healthy subjects, we investigated the onset of brain activity in relation to ipsilateral and contralateral stimulation with 2 odorants. Olfactory stimuli (200ms duration) were applied using an olfactometer, and brain activity was recorded with a 248-magnetometer whole-head MEG system. Olfactory responses were identified shortly (within 150ms) after stimulus onset in both hemispheres. Stimulation on the ipsilateral side yielded signals earlier (starting at 90ms) compared with contralateral stimulation in the primary olfactory cortex, hippocampus, parahippocampal gyrus, amygdala, and orbitofrontal cortex ( P < 0.001). The duration and peak amplitude of olfactory evoked magnetic fields were found to increase with increasing poststimulus time in the majority of the investigated cortical structures ( P ≤ 0.019 and P ≤ 0.021). The study showed the locations of early olfactory brain activity in humans within 150ms after the onset of stimuli. Olfactory activation is processed on the ipsilateral side of stimulation in early stages. After a short delay of 34ms a corresponding pattern of activation was also seen in the contralateral hemisphere, indicating the functional connectivity between the 2 hemispheres in the anterior commissure.

17.
Cells Tissues Organs ; 201(3): 203-10, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26954067

RESUMEN

In the 1970s, by using classic histological methods, close topographical relationships between special areas of enteric ganglia and capillaries were shown in the pig. In this study, by application of double and triple immunohistochemistry, we confirmed this neurovascular interface and demonstrated that these zones are mainly confined to nitrergic neurons in the myenteric and the external submucosal plexus. In the upper small intestine of the pig, the respective neurons display type III morphology, i.e. they have long, slender and branched dendrites and a single axon. In another set of experiments, we prepared specimens for electron-microscopical analysis of these zones. Both ganglia and capillaries display continuous basement membranes, the smallest distances between them being 1,000 nm at the myenteric and 300 nm at the external submucosal level. The capillary endothelium was mostly continuous but, at the external submucosal level, scattered fenestrations were observed. This particular neurovascular relationship suggests that nitrergic neurons may require a greater amount of oxygen and/or nutrients. In guinea pig and mouse, previous ischemia/reperfusion experiments showed that nitrergic neurons are selectively damaged. Thus, a preferential blood supply of enteric nitrergic neurons may indicate that these neurons are more vulnerable in ischemia.


Asunto(s)
Intestino Delgado/irrigación sanguínea , Intestino Delgado/inervación , Plexo Mientérico/irrigación sanguínea , Neuronas Nitrérgicas/citología , Plexo Submucoso/irrigación sanguínea , Porcinos/anatomía & histología , Animales , Capilares/ultraestructura , Femenino , Inmunohistoquímica , Intestino Delgado/ultraestructura , Masculino , Plexo Mientérico/citología , Plexo Mientérico/ultraestructura , Proteínas de Neurofilamentos/análisis , Óxido Nítrico Sintasa de Tipo I/análisis , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/análisis , Plexo Submucoso/citología , Plexo Submucoso/ultraestructura
18.
Am J Physiol Renal Physiol ; 308(5): F450-8, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25520009

RESUMEN

There is good evidence for a causal link between excessive sympathetic drive to the kidney and hypertension. We hypothesized that sympathetic regulation of tubular Na(+) absorption may occur in the aldosterone-sensitive distal nephron, where the fine tuning of renal Na(+) excretion takes place. Here, the appropriate regulation of transepithelial Na(+) transport, mediated by the amiloride-sensitive epithelial Na(+) channel (ENaC), is critical for blood pressure control. To explore a possible effect of the sympathetic transmitter norepinephrine on ENaC-mediated Na(+) transport, we performed short-circuit current (Isc) measurements on confluent mCCDcl1 murine cortical collecting duct cells. Norepinephrine caused a complex Isc response with a sustained increase of amiloride-sensitive Isc by ∼44%. This effect was concentration dependent and mediated via basolateral α2-adrenoceptors. In cells pretreated with aldosterone, the stimulatory effect of norepinephrine was reduced. Finally, we demonstrated that noradrenergic nerve fibers are present in close proximity to ENaC-expressing cells in murine kidney slices. We conclude that the sustained stimulatory effect of locally elevated norepinephrine on ENaC-mediated Na(+) absorption may contribute to the hypertensive effect of increased renal sympathetic activity.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Túbulos Renales Colectores/metabolismo , Norepinefrina/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Sodio/metabolismo , Aldosterona , Animales , Línea Celular , Ratones Endogámicos C57BL
19.
Eur J Nucl Med Mol Imaging ; 42(2): 210-4, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25248644

RESUMEN

PURPOSE: To determine the frequency of seemingly pathological retroperitoneal uptake in the location of the coeliac ganglia in patients undergoing [(68)Ga]PSMA-HBED PET/CT. METHODS: The study included 85 men with prostate cancer referred for [(68)Ga]PSMA-HBED PET/CT. The PET/CT scans were evaluated for the local finding in the prostate and the presence of lymph node metastases, distant metastases and coeliac ganglia. The corresponding standardized uptake values (SUV) were determined. SUVmax to background uptake (gluteal muscle SUVmean) ratios were calculated for the ganglia and lymph node metastases. Immunohistochemistry was performed on the ganglia. RESULTS: In 76 of the 85 patients (89.4%) at least one ganglion with tracer uptake was found. For the ganglia, SUVmax and SUVmax to background SUVmean ratios were 2.97 ± 0.88 and 7.98 ± 2.84 (range 1.57-6.38 and 2.83-30.6), respectively, and 82.8% of all ganglia showed an uptake ratio of >5.0. For lymph node metastases, SUVmax and SUVmax to background SUVmean ratios were 8.5 ± 7.0 and 23.31 ± 22.23 (range 2.06-35.9 and 5.25-115.8), respectively. In 35 patients (41.2%), no lymph node metastases were found but tracer uptake was seen in the ganglia. Immunohistochemistry confirmed strong PSMA expression in the ganglia. CONCLUSION: Coeliac ganglia show a relevant [(68)Ga]PSMA-HBED uptake in most patients and may mimic lymph node metastases.


Asunto(s)
Plexo Celíaco/diagnóstico por imagen , Ácido Edético/análogos & derivados , Metástasis Linfática/diagnóstico por imagen , Oligopéptidos , Neoplasias de la Próstata/diagnóstico por imagen , Radiofármacos , Anciano , Anciano de 80 o más Años , Reacciones Falso Positivas , Isótopos de Galio , Radioisótopos de Galio , Humanos , Masculino , Persona de Mediana Edad , Imagen Multimodal , Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X
20.
Histochem Cell Biol ; 141(4): 393-405, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24203089

RESUMEN

Calretinin (CALR) is often used as an immunohistochemical marker for the histopathological diagnosis of human intestinal neuropathies. However, little is known about its distribution pattern with respect to specific human enteric neuron types. Prior studies revealed CALR in both myenteric and submucosal neurons, most of which colabel with choline acetyl transferase (ChAT). Here, we specified the chemical code of CALR-positive neurons in small and large intestinal wholemounts in a series of 28 patients. Besides other markers, we evaluated the labeling pattern of CALR in combination with vasoactive intestinal peptide (VIP). In colonic submucosa, CALR and VIP were almost completely colocalized in about three-quarters of all submucosal neurons. In the small intestinal submucosa, both the colocalization rate of CALR and VIP as well as the proportion of these neurons were lower (about one-third). In the myenteric plexus of both small intestine and colon, CALR amounted to 11 and 10 %, respectively, whereas VIP to 5 and 4 % of the whole neuron population, respectively. Colocalization of both markers was found in only 2 and 3 % of myenteric neurons, respectively. In section specimens, nerve fibers coreactive for CALR and VIP were found in the mucosa but not in the muscle coat. Summarizing the present and earlier results, CALR was found in at least one submucosal and two myenteric neuron populations. Submucosal CALR+/VIP+/ChAT± neurons innervate mucosal structures. Furthermore, CALR immunoreactivity in the myenteric plexus was observed in morphological type II (supposed primary afferent) and spiny type I (supposed inter- or motor-) neurons.


Asunto(s)
Calbindina 2/inmunología , Colon/inmunología , Mucosa Intestinal/inmunología , Neuronas/citología , Neuronas/inmunología , Anciano , Anciano de 80 o más Años , Calbindina 2/análisis , Colon/química , Colon/citología , Femenino , Humanos , Inmunohistoquímica , Mucosa Intestinal/química , Mucosa Intestinal/citología , Masculino , Persona de Mediana Edad , Neuronas/química , Neuronas/clasificación , Péptido Intestinal Vasoactivo/análisis , Péptido Intestinal Vasoactivo/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA