Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Nat Prod ; 87(3): 629-637, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38364770

RESUMEN

Diabetes type 2 (T2DM) is the non-insulin-linked disease that is now becoming a major problem not only in the West but also in Asia (particularly in China and close geographic areas). Unlike the childhood onset diabetic disease (T1DM), which is effectively due to lack of insulin production and is maintained by insulin injection, T2DM is best thought of as an adult disease often being caused by what is now considered "metabolic syndrome" or the culmination of too many insults to the body, in particular obesity and its "coupled diseases" including heart problems. Its symptoms were described in ancient times not only in Europe but also in Asia and with later (1600s) anecdotal reports from South America. In all cases, the diagnostic was "sweet urine" due to the excretion of large amounts of glucose in the urine. This review covers the non-insulin agents approved from 1990 to 2021 from a historical aspect and discussions of the latest agents and can be considered an extension of the author's previous drug source reviews, but this time concentrating on nominally one disease entity, though metabolic syndrome is a collection of ailments.


Asunto(s)
Productos Biológicos , Diabetes Mellitus Tipo 2 , Adulto , Humanos , Niño , Insulina/metabolismo , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucosa , Obesidad
2.
J Nat Prod ; 87(7): 1763-1777, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38970504

RESUMEN

The isolation, structure determination, and biological evaluation of constituents from the organic extract of Turraea delphinensis Wahlert (Meliaceae) resulted in the isolation of 51 secondary metabolites, including 14 new terpenoids (six cycloartanes, four tirucallanes/euphanes, three limonoids, and a 7-keto sterol). Among the new compounds, 1 is the first triterpenoid with a trioxaspiro[4.4]nonane side chain, while 11-13 are the first 17-γ-lactone tetranortriterpenoids with four oxygenated functional groups at C-1, -3, -6, and -7. The isolated compounds were evaluated for antiproliferative activity against five human tumor cell lines, including a vinblastine-resistant cell line.


Asunto(s)
Antineoplásicos Fitogénicos , Ensayos de Selección de Medicamentos Antitumorales , Meliaceae , Terpenos , Triterpenos , Humanos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Terpenos/farmacología , Terpenos/química , Terpenos/aislamiento & purificación , Estructura Molecular , Meliaceae/química , Triterpenos/farmacología , Triterpenos/química , Triterpenos/aislamiento & purificación , Línea Celular Tumoral , Limoninas/farmacología , Limoninas/química , Limoninas/aislamiento & purificación , Proliferación Celular/efectos de los fármacos
3.
J Nat Prod ; 87(2): 266-275, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38251859

RESUMEN

Four cytotoxic heptacyclic caged-xanthones [gambogefic acids B-E (1-4)], a cytotoxic hexacyclic caged-xanthone [garcilatelic acid (5)], and four biphenyl derivatives [garcilatelibiphenyls A-D (6-9)] were newly isolated in a phytochemical study of a 50% MeOH/CH2Cl2 extract of Garcinia lateriflora (Clusiaceae). The isolated compounds were evaluated for antiproliferative activity against five human tumor cell lines including a vincristine-resistant line. The new caged-xanthones displayed potent activity with IC50 values from 0.5 to 6.7 µM against all tested tumor cell lines.


Asunto(s)
Antineoplásicos Fitogénicos , Garcinia , Xantonas , Humanos , Compuestos de Bifenilo , Línea Celular Tumoral , Xantonas/farmacología , Estructura Molecular , Antineoplásicos Fitogénicos/farmacología
4.
Molecules ; 29(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38338394

RESUMEN

Eight vilasinin-class limonoids, including the unusually chlorinated rubescins K-M (1-3), the 2,3-epoxylated rubescin N (4), and rubescins O-R (5-8), were newly isolated from Trichilia rubescens. The structures of the isolated compounds were determined through spectroscopic and spectrometric analyses, as well as ECD calculations. The natural occurrence of chlorinated limonoids 1-3 was confirmed by chemical methods and HPLC analysis of a roughly fractionated portion of the plant extract. Eight selected limonoids, including previously known and new compounds, were evaluated for antiproliferative activity against five human tumor cell lines. All tested limonoids, except 8, exhibited significant potency, with IC50 values of <10 µM; in particular, limonoid 14 strongly inhibited tumor cell growth, with IC50 values of 0.54-2.06 µM against all tumor cell lines, including multi-drug-resistant cells.


Asunto(s)
Limoninas , Meliaceae , Humanos , Limoninas/química , Línea Celular Tumoral , Meliaceae/química , Estructura Molecular
5.
Nat Prod Rep ; 39(1): 20-32, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34342327

RESUMEN

Covering: 1981 to 2019Natural products continue to play a major role in drug discovery, with half of new chemical entities based structurally on a natural product. Herein, we report a cheminformatic analysis of the structural and physicochemical properties of natural product-based drugs in comparison to top-selling brand-name synthetic drugs, and a selection of chemical probes recently discovered from diversity-oriented synthesis libraries. In this analysis, natural product-based drugs covered a broad range of chemical space based on size, polarity, and three-dimensional structure. Natural product-based structures were also more prevalent in top-selling drugs of 2018 compared to 2006. Further, the drugs clustered well according to biosynthetic origins, but less so based on therapeutic classes. Macrocycles occupied distinctive and relatively underpopulated regions of chemical space, while chemical probes largely overlapped with synthetic drugs. This analysis highlights the continued opportunities to leverage natural products and their pharmacophores in modern drug discovery.


Asunto(s)
Productos Biológicos/química , Quimioinformática , Descubrimiento de Drogas , Descubrimiento de Drogas/métodos
6.
Pharmacol Res ; 177: 106076, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35074524

RESUMEN

Drug discovery from natural sources is going through a renaissance, having spent many decades in the shadow of synthetic molecule drug discovery, despite the fact that natural product-derived compounds occupy a much greater chemical space than those created through synthetic chemistry methods. With this new era comes new possibilities, not least the novel targets that have emerged in recent times and the development of state-of-the-art technologies that can be applied to drug discovery from natural sources. Although progress has been made with some immunomodulating drugs, there remains a pressing need for new agents that can be used to treat the wide variety of conditions that arise from disruption, or over-activation, of the immune system; natural products may therefore be key in filling this gap. Recognising that, at present, there is no authoritative article that details the current state-of-the-art of the immunomodulatory activity of natural products, this in-depth review has arisen from a joint effort between the International Union of Basic and Clinical Pharmacology (IUPHAR) Natural Products and Immunopharmacology Sections, with contributions from a number of world-leading researchers in the field of natural product drug discovery, to provide a "position statement" on what natural products has to offer in the search for new immunomodulatory argents. To this end, we provide a historical look at previous discoveries of naturally occurring immunomodulators, present a picture of the current status of the field and provide insight into the future opportunities and challenges for the discovery of new drugs to treat immune-related diseases.


Asunto(s)
Productos Biológicos , Farmacología Clínica , Productos Biológicos/química , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Descubrimiento de Drogas , Factores Inmunológicos/farmacología , Factores Inmunológicos/uso terapéutico , Agentes Inmunomoduladores
7.
Mar Drugs ; 20(1)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35049917

RESUMEN

Marine environments are underexplored terrains containing fungi that produce a diversity of natural products given unique environmental pressures and nutrients. While bacteria are commonly the most studied microorganism for natural products in the marine world, marine fungi are also abundant but remain an untapped source of bioactive metabolites. Given that their terrestrial counterparts have been a source of many blockbuster antitumor agents and anti-infectives, including camptothecin, the penicillins, and cyclosporin A, marine fungi also have the potential to produce new chemical scaffolds as leads to potential drugs. Fungi are more phylogenetically diverse than bacteria and have larger genomes that contain many silent biosynthetic gene clusters involved in making bioactive compounds. However, less than 5% of all known fungi have been cultivated under standard laboratory conditions. While the number of reported natural products from marine fungi is steadily increasing, their number is still significantly lower compared to those reported from their bacterial counterparts. Herein, we discuss many varied cytotoxic and anti-infective fungal metabolites isolated from extreme marine environments, including symbiotic associations as well as extreme pressures, temperatures, salinity, and light. We also discuss cultivation strategies that can be used to produce new bioactive metabolites or increase their production. This review presents a large number of reported structures though, at times, only a few of a large number of related structures are shown.


Asunto(s)
Organismos Acuáticos , Hongos , Animales , Antiinfecciosos , Antineoplásicos , Factores Biológicos
8.
Chem Soc Rev ; 50(16): 9346, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34346445

RESUMEN

Correction for 'Antiviral drug discovery: preparing for the next pandemic' by Catherine S. Adamson et al., Chem. Soc. Rev., 2021, 50, 3647-3655, DOI: .

9.
Chem Soc Rev ; 50(6): 3647-3655, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33524090

RESUMEN

Clinically approved antiviral drugs are currently available for only 10 of the more than 220 viruses known to infect humans. The SARS-CoV-2 outbreak has exposed the critical need for compounds that can be rapidly mobilised for the treatment of re-emerging or emerging viral diseases, while vaccine development is underway. We review the current status of antiviral therapies focusing on RNA viruses, highlighting strategies for antiviral drug discovery and discuss the challenges, solutions and options to accelerate drug discovery efforts.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Descubrimiento de Drogas/métodos , Terapia Molecular Dirigida/métodos , Pandemias/prevención & control , ARN Viral/antagonistas & inhibidores , Antivirales/química , Productos Biológicos/química , Productos Biológicos/farmacología , COVID-19/prevención & control , COVID-19/virología , Inhibidores de Proteasa de Coronavirus/química , Inhibidores de Proteasa de Coronavirus/farmacología , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de la Síntesis del Ácido Nucleico/química , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , ARN Viral/química , ARN Viral/genética , ARN Viral/metabolismo , SARS-CoV-2/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , SARS-CoV-2/genética , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
10.
J Nat Prod ; 84(3): 917-931, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33635651

RESUMEN

As of early November 2020, there are 10 approved antibody drug conjugates (ADCs) plus two others that are not usually listed. In addition, there are 70 ADCs at stages from phase I to phase III and 23 that are at the preclinical stage. The warheads of all of these drugs and drug candidates have their origins in natural product structures. The sources and modifications are discussed in general and then specifically commented on in each case with either the generic name if known and/or the ADC's ID names. Interestingly, almost all warheads listed are from microbial sources though initially a number were thought to have been from plants. The latest NCT numbers from Clintrials.gov of all phase I to phase III candidates are also given. Three unusual ADCs are also discussed, two of which (an antitumor agent and one directed against autoimmune diseases) are not usually listed as ADCs, with the third being an anti-infective.


Asunto(s)
Productos Biológicos/farmacología , Inmunoconjugados/farmacología , Antibacterianos/farmacología , Antineoplásicos/farmacología , Ensayos Clínicos como Asunto , Aprobación de Drogas , Estructura Molecular
11.
Curr Ther Res Clin Exp ; 95: 100645, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34691294

RESUMEN

For a significant number of years, scientists of many persuasions have assayed natural product materials ranging from crude extracts to pure compounds, in a multitude of assays causally related to some biological processes. However, in a very significant number of submitted papers and published articles, what may be considered as canned biological assays were used, and if a positive effect was observed, then the authors would claim that the material assayed was a potential drug lead. This also occurred with pure synthetic compounds and compounds derived from natural products by simple chemical modifications. However, what has now become quite obvious-with all such classes of materials-is that there are many promiscuous players with multiple bioactivities. These can range from relatively crude extracts, pure compounds from natural products, synthetic processes that produce natural product derivatives, and even compounds that are truly synthetic in origin. There is also a potential problem with the data from crude to purified extracts being used to claim some form of beneficial activities for such materials, to sell that particular mixture to the lay public, by very careful descriptions of its possible uses due to legal hurdles. With the advent of artificial intelligence and very large compound databases, some of which may well contain impure materials, scientists from a variety of backgrounds have begun to utilize such listings to obtain compounds for their low to high throughput biological screens, without realizing that there are very significant numbers of active compounds (eg, pan assay interference compounds and invalid metabolic panaceas), that will hit in many different screens for a variety of reasons, thus leading to significant wasted efforts and published scientific articles that have incorrect results. This commentary gives some of the history of such materials but is designed to be used as a warning to both researchers and in particular, journal editors, and reviewers, that reports of biological results that are claimed to be the result of the compounds used, need to be very carefully screened for results due to such promiscuous compounds, irrespective of their nominal source(s). All literature searches were made by the author and the background knowledge has come from more than 55 years of research in industry and governmental laboratories in both the United Kingdom and the United States, for enzyme inhibitors/activators as well as antimicrobial and antitumor lead compounds mainly from natural product sources. The conclusion that I came up with as a result is this: Caveat emptor. (Curr Ther Res Clin Exp. 2021; 82:XXX-XXX) © 2021 Elsevier HS Journals, Inc.

12.
J Nat Prod ; 83(3): 770-803, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32162523

RESUMEN

This review is an updated and expanded version of the five prior reviews that were published in this journal in 1997, 2003, 2007, 2012, and 2016. For all approved therapeutic agents, the time frame has been extended to cover the almost 39 years from the first of January 1981 to the 30th of September 2019 for all diseases worldwide and from ∼1946 (earliest so far identified) to the 30th of September 2019 for all approved antitumor drugs worldwide. As in earlier reviews, only the first approval of any drug is counted, irrespective of how many "biosimilars" or added approvals were subsequently identified. As in the 2012 and 2016 reviews, we have continued to utilize our secondary subdivision of a "natural product mimic", or "NM", to join the original primary divisions, and the designation "natural product botanical", or "NB", to cover those botanical "defined mixtures" now recognized as drug entities by the FDA (and similar organizations). From the data presented in this review, the utilization of natural products and/or synthetic variations using their novel structures, in order to discover and develop the final drug entity, is still alive and well. For example, in the area of cancer, over the time frame from 1946 to 1980, of the 75 small molecules, 40, or 53.3%, are N or ND. In the 1981 to date time frame the equivalent figures for the N* compounds of the 185 small molecules are 62, or 33.5%, though to these can be added the 58 S* and S*/NMs, bringing the figure to 64.9%. In other areas, the influence of natural product structures is quite marked with, as expected from prior information, the anti-infective area being dependent on natural products and their structures, though as can be seen in the review there are still disease areas (shown in Table 2) for which there are no drugs derived from natural products. Although combinatorial chemistry techniques have succeeded as methods of optimizing structures and have been used very successfully in the optimization of many recently approved agents, we are still able to identify only two de novo combinatorial compounds (one of which is a little speculative) approved as drugs in this 39-year time frame, though there is also one drug that was developed using the "fragment-binding methodology" and approved in 2012. We have also added a discussion of candidate drug entities currently in clinical trials as "warheads" and some very interesting preliminary reports on sources of novel antibiotics from Nature due to the absolute requirement for new agents to combat plasmid-borne resistance genes now in the general populace. We continue to draw the attention of readers to the recognition that a significant number of natural product drugs/leads are actually produced by microbes and/or microbial interactions with the "host from whence it was isolated"; thus we consider that this area of natural product research should be expanded significantly.


Asunto(s)
Productos Biológicos/farmacología , Descubrimiento de Drogas , Descubrimiento de Drogas/historia , Historia del Siglo XX , Historia del Siglo XXI , Estructura Molecular , Preparaciones Farmacéuticas
13.
Planta Med ; 86(13-14): 891-905, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32023633

RESUMEN

In the last 20 or so years, the influence of endophytes and, quite recently, epiphytes of plants upon the compounds found in those plants, which were usually assumed to be phytochemicals produced by the plant for a variety of reasons, often as a defense against predators, is becoming more evident, in particular in the case of antitumor agents originally isolated from plant sources, though antibiotic agents might also be found, particularly from epiphytes. In this review, we started with the first report in 1993 of a taxol-producing endophyte and then expanded the compounds discussed to include camptothecin, the vinca alkaloids, podophyllotoxin, and homoharringtonine from endophytic microbes and then the realization that maytansine is not a plant secondary metabolite at all, and that even such a well-studied plant such as Arabidopsis thaliana has a vast repertoire of potential bioactive agents in its leaf epiphytic bacteria. We have taken data from a variety of sources, including a reasonable history of these discoveries that were not given in recent papers by us, nor in other papers covering this topic. The sources included the Scopus database, but we also performed other searches using bibliographic tools, thus, the majority of the papers referenced are the originals, though we note some very recent papers that have built on previous results. We concluded with a discussion of the more modern techniques that can be utilized to "persuade" endophytes and epiphytes to switch on silent biosynthetic pathways and how current analytical techniques may aid in evaluating such programs. We also comment at times on some findings, particularly in the case of homoharringtonine, where there are repetitious data reports differing by a few years claiming the same endophyte as the producer.


Asunto(s)
Antineoplásicos , Endófitos , Antibacterianos , Hongos , Plantas
14.
Bioorg Med Chem Lett ; 29(2): 134-137, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30553734

RESUMEN

Two new cassaine-type diterpenoids, namely erythrofordins D (1) and E (2), sourced from a Cameroon collection of Erythrophleum suaveolens were isolated and assessed for anti-tumor activity. In the NCI-60 cancer cell assay, erythrofordins D (1) and E (2) were found to be cytotoxic in the low micro molar ranges with a mean GI50 value of 2.45 and 0.71 µM, mean TGI value of 9.77 and 2.29 µM, and a mean LC50 of 26.92 and 11.48 µM for 1 and 2 respectively. Using the COMPARE algorithm, the new compounds were found to have similar NCI-60 response profiles to the known cardiac glycosides hyrcanoside and strophanthin. In addition, in an assay examining the viability and contractile function in human cardiomyocytes derived from induced pluripotent stem-cells, erythrofordins showed cardiotoxicity effects at concentrations as low as 0.03 µg/mL.


Asunto(s)
Caesalpinia/química , Diterpenos/farmacología , Miocitos Cardíacos/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Diterpenos/química , Diterpenos/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Relación Estructura-Actividad
15.
J Nat Prod ; 82(10): 2852-2858, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31550158

RESUMEN

The isolation of 12 secondary metabolites, including seven new acetophenone monomers, from the 50% CH3OH/CH2Cl2 extract (N089419-L/6) of Acronychia trifoliolata was reported previously. In the present work, three new prenylated acetophenone dimers (1-3) and five known dimers (4-8) were isolated, and their structures were elucidated by using various NMR spectroscopic techniques and HRMS. Among the new dimers, an unprecedented 4-isobutyl-3-isopropyltetrahydro-2H-pyran ring was observed in the structure of 1. This study is the first to report the formation of a 2H-pyran ring between two prenylated acetophloroglucinols. Only four related dimers have been reported before, and they were formylated phloroglucinol dimers from the family Eucalypteae. Compounds 2 and 3 are acrovestone-like dimers, and the structure of 3 was confirmed by total synthesis. The evaluation of the antiproliferative activity of isolated and synthesized acrovestone-like dimers indicated that a double bond in the prenyl-like moiety as found in the more active compounds might be important for mediating activity, while the pendant isobutyl group seems to be less important.


Asunto(s)
Acetofenonas/aislamiento & purificación , Rutaceae/química , Acetofenonas/síntesis química , Acetofenonas/química , Acetofenonas/farmacología , Dimerización , Floroglucinol/aislamiento & purificación , Extractos Vegetales/análisis , Prenilación
16.
J Nat Prod ; 82(9): 2368-2378, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31442048

RESUMEN

A CH3OH-CH2Cl2 (1:1) extract (N025439) of the leaves and twigs of Cryptocarya laevigata furnished eight new compounds, 1-8. Based on extensive 1D and 2D NMR spectroscopic data examination, the new δ-lactone derivatives 1-6 are monoterpene-polyketide hybrids containing a unique spiro[3.5]nonenyl moiety. Their trivial names, cryptolaevilactones G-L, follow those of the related known meroterpenoids cryptolaevilactones A-F. Cryptolaevilactone L (6) contains 11,12-cis-oriented substituents, while the other cryptolaevilactones contain trans-oriented groups. The structure of the linear δ-lactone 7, cryptolaevilactone M, was characterized from various spectroscopic data analysis, and the absolute configuration was determined by total synthesis through stereoselective allylation and Grubbs olefin metathesis. Compound 8 was elucidated to be an ionone derivative with a 3,4-syn-diol functionality.


Asunto(s)
Cryptocarya/química , Lactonas/química , Monoterpenos/química , Compuestos de Espiro/química , Antineoplásicos Fitogénicos/química , Línea Celular Tumoral , Humanos , Estructura Molecular , Hojas de la Planta/química , Análisis Espectral/métodos
17.
Mar Drugs ; 17(6)2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31159276

RESUMEN

Currently a few compounds isolated from marine sources have become drugs, mainly directed towards cancer and pain. Compounds from marine sources have exquisite potencies against eukaryotic cells, as they act as protective agents against attack by predators in the marine environment. Their toxicities act as a "double-edged sword" as they are often too toxic for direct use in humans and thus have to be chemically modified. By linking suitably modified compounds to monoclonal antibodies directed against specific epitopes in mammalian cancer cells, they can be delivered to a specific cell type in humans. This review updates and extends an article published in early 2017, demonstrating how by careful chemical modifications, highly toxic compounds, frequently peptidic in nature, can be utilized as antitumor drug candidates. The antibody-drug- conjugates (ADCs) discussed are those that are currently in clinical trials listed in the NIH Clinical Trials Registry as, "currently active, recruiting or in some cases, recently completed". There are also some ADCs discussed that are at the advanced preclinical stage, that in some cases, are repurposing current drug entities, and the review finishes with a short discussion of the aplyronines as potential candidate warheads as a result of scalable synthetic processes.


Asunto(s)
Toxinas Marinas/química , Toxinas Marinas/uso terapéutico , Neoplasias/tratamiento farmacológico , Analgésicos/química , Analgésicos/uso terapéutico , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Humanos , Inmunoconjugados/uso terapéutico , Dolor/tratamiento farmacológico
18.
Molecules ; 24(21)2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31694283

RESUMEN

Seven new butanolides, peltanolides A-G (1-7), and two lignan glucosides, peltasides A (8) and B (9), along with eleven known compounds, 10-20, were isolated from a crude CH3OH/CH2Cl2 (1:1) extract of the fruit of Hernandia nymphaeifolia (Hernandiaceae). The structures of 1-9 were characterized by extensive 1D and 2D NMR spectroscopic and HRMS analysis. The absolute configurations of newly isolated compounds 1-9 were determined from data obtained by optical rotation and electronic circular dichroism (ECD) exciton chirality methods. Butanolides and lignan glucosides have not been isolated previously from this genus. Several isolated compounds were evaluated for antiproliferative activity against human tumor cell lines. Lignans 15 and 16 were slightly active against chemosensitive tumor cell lines A549 and MCF-7, respectively. Furthermore, both compounds displayed significant activity (IC50 = 5 µM) against a P-glycoprotein overexpressing multidrug-resistant tumor cell line (KB-VIN) but were less active against its parent chemosensitive cell line (KB).


Asunto(s)
Proliferación Celular/efectos de los fármacos , Frutas/química , Glicósidos/química , Glicósidos/farmacología , Hernandiaceae/química , Lignanos/química , Lignanos/farmacología , Células A549 , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , Dicroismo Circular/métodos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Células HeLa , Humanos , Células MCF-7 , Espectroscopía de Resonancia Magnética/métodos
19.
J Org Chem ; 83(2): 951-963, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29286245

RESUMEN

The isolation studies of a crude MeOH/CH2Cl2 (1:1) extract (N005829) of the bark of Laetia corymbulosa yielded 15 new clerodane diterpenes, designated corymbulosins I-W (1-15), as well as four known diterpenes, 16-19. The structures of 1-15 were characterized on the basis of extensive 1D and 2D NMR and HRMS analyses. The absolute configurations of newly isolated compounds 1-15, as well as known 16-19, which were reported previously with only relative configurations, were determined through ECD experiments, X-ray analysis, chemical methods, including Mosher esterification, and comparison of their spectroscopic data. The isolated compounds were evaluated for cytotoxicity against human cancer cell lines. Flow cytometric and immunocytochemical observations of cells treated with cytotoxic clerodanes demonstrated that the chromatin was fragmented and dispersed with formation of apoptotic microtubules.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Diterpenos de Tipo Clerodano/farmacología , Corteza de la Planta/química , Salicaceae/química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Diterpenos de Tipo Clerodano/química , Diterpenos de Tipo Clerodano/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Relación Estructura-Actividad
20.
J Nat Prod ; 81(8): 1884-1891, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-30106296

RESUMEN

Alangium longiflorum is currently in extinction crisis, which will likely severely hamper further phytochemical investigation of this plant species from new collections. A crude extract of leaves of A. longiflorum (N33539), collected for the U.S. National Cancer Institute in 1989, showed potent cancer cell line antiproliferative activity. A phytochemical study resulted in the isolation of 17 secondary metabolites, including two new tetrahydroisoquinoline alkaloids, 8-hydroxytubulosine (1) and 2'- O- trans-sinapoylisoalangiside (2), as well as a new sinapolyloxylupene derivative (3). Using in-house assays and NCI-60 panel screening, compound 1 displayed broad-spectrum inhibitory activity at submicromolar levels against most tested tumor cell lines, except for drug-transporter-overexpressing cells. Compound 1 caused accumulation of sub-G1 cells with no effect on cell cycle progression, suggesting that this substance is an apoptosis inducer.


Asunto(s)
Alangiaceae/química , Alcaloides/química , Alcaloides/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Especies en Peligro de Extinción , Fase G1/efectos de los fármacos , Humanos , Espectroscopía de Resonancia Magnética , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA