RESUMEN
We report that squaric esters can serve as bifunctional reagents for selective peptide stapling reactions. Formation of the squaric amide staple occurs under mild conditions with amine-containing side chains. We show that short resin-bound peptides are readily stapled on solid phase and that stapling can occur at various relative positions along the peptide and with various amine tether lengths (e.g. Lysine, ornithine, etc). The squaric amide staples are stable to strong acid conditions used to cleave the stapled peptide from the resin and the stapled peptides show an increase in helicity as analyzed through circular dichroism.
RESUMEN
Proteins and enzymes generally achieve their functions by creating well-defined 3D architectures that pre-organize reactive functionalities. Mimicking this approach to supramolecular pre-organization is leading to the development of highly versatile artificial chemical environments, including new biomaterials, medicines, artificial enzymes, and enzyme-like catalysts. The use of ß-turn and α-helical motifs is one approach that enables the precise placement of reactive functional groups to enable selective substrate activation and reactivity/selectivity that approaches natural enzymes. Our recent work has demonstrated that helical peptides can serve as scaffolds for pre-organizing two reactive groups to achieve enzyme-like catalysis. In this study, we used CYANA and AmberTools to develop a computational approach for determining how the structure of our peptide catalysts can lead to enhancements in reactivity. These results support our hypothesis that the bifunctional nature of the peptide enables catalysis by pre-organizing the two catalysts in reactive conformations that accelerate catalysis by proximity. We also present evidence that the low reactivity of monofunctional peptides can be attributed to interactions between the peptide-bound catalyst and the helical backbone, which are not observed in the bifunctional peptide.