Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurochem ; 113(1): 175-87, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20070867

RESUMEN

The molecular mechanism of action of antipsychotic drugs is not well understood. Their complex receptor affinity profiles indicate that their action could extend beyond dopamine receptor blockade. Single gene expression studies and high-throughput gene profiling have shown the induction of genes from several molecular classes and functional categories. Using a focused microarray approach, we investigated gene regulation in rat striatum, frontal cortex, and hippocampus after chronic administration of haloperidol or olanzapine. Regulated genes were validated by in situ hybridization, real-time PCR, and immunohistochemistry. Only limited overlap was observed in genes regulated by haloperidol and olanzapine. Both drugs elicited maximal gene regulation in the striatum and least in the hippocampus. Striatal gene induction by haloperidol was predominantly in neurotransmitter signaling, G-protein coupled receptors, and transcription factors. Olanzapine prominently induced retinoic acid and trophic factor signaling genes in the frontal cortex. The data also revealed the induction of several genes that could be targeted in future drug development efforts. The study uncovered the induction of several novel genes, including somatostatin receptors and metabotropic glutamate receptors. The results demonstrating the regulation of multiple receptors and transcription factors suggests that both typical and atypical antipsychotics could possess a complex molecular mechanism of action.


Asunto(s)
Antipsicóticos/farmacología , Benzodiazepinas/farmacología , Encéfalo/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Haloperidol/análogos & derivados , Animales , Encéfalo/metabolismo , Perfilación de la Expresión Génica/métodos , Haloperidol/farmacología , Masculino , Neurotransmisores/genética , Neurotransmisores/metabolismo , Olanzapina , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Ratas , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Biol Psychiatry ; 63(7): 710-20, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-17936724

RESUMEN

BACKGROUND: The transcription factor cyclic adenosine monophosphate response element binding protein (CREB) orchestrates diverse neurobiological processes including cell differentiation, survival, and plasticity. Alterations in CREB-mediated transcription have been implicated in numerous central nervous system (CNS) disorders including depression, anxiety, addiction, and cognitive decline. However, it remains unclear how CREB contributes to normal and aberrant CNS function, as the identity of CREB-regulated genes in brain and the regional and temporal dynamics of CREB function remain largely undetermined. METHODS: We combined microarray and chromatin immunoprecipitation technology to analyze CREB-DNA interactions in brain. We compared the occupancy and activity of CREB at gene promoters in rat frontal cortex, hippocampus, and striatum before and after a rodent model of electroconvulsive therapy. RESULTS: Our analysis identified >860 CREB binding sites in rat brain. We identified multiple genomic loci enriched with CREB binding sites and find that CREB-occupied transcripts interact extensively to promote cell proliferation, plasticity, and resiliency. We discovered regional differences in CREB occupancy and activity that explain, in part, the diverse biological and behavioral outputs of CREB activity in frontal cortex, hippocampus, and striatum. Electroconvulsive seizure rapidly increased CREB occupancy and/or phosphorylation at select promoters, demonstrating that both events contribute to the temporal regulation of the CREB transcriptome. CONCLUSIONS: Our data provide a mechanistic basis for CREB's ability to integrate regional and temporal cues to orchestrate state-specific patterns of transcription in the brain, indicate that CREB is an important mediator of the biological responses to electroconvulsive seizure, and provide global mechanistic insights into CREB's role in psychiatric and cognitive function.


Asunto(s)
Trastornos de Ansiedad/metabolismo , Trastornos de Ansiedad/fisiopatología , Conducta Adictiva/metabolismo , Conducta Adictiva/fisiopatología , Encéfalo/metabolismo , Encéfalo/fisiopatología , Proteína de Unión a CREB/fisiología , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/fisiopatología , Depresión/metabolismo , Depresión/fisiopatología , Terapia Electroconvulsiva/efectos adversos , Convulsiones , Animales , Trastornos de Ansiedad/inmunología , Conducta Adictiva/inmunología , Western Blotting , Encéfalo/inmunología , Proteína de Unión a CREB/inmunología , Proteína de Unión a CREB/metabolismo , Proliferación Celular , Cuerpo Estriado/inmunología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiopatología , Depresión/inmunología , Modelos Animales de Enfermedad , Lóbulo Frontal/inmunología , Lóbulo Frontal/metabolismo , Lóbulo Frontal/fisiopatología , Hipocampo/inmunología , Hipocampo/metabolismo , Hipocampo/fisiopatología , Inmunoprecipitación , Masculino , Plasticidad Neuronal/fisiología , Análisis por Matrices de Proteínas , Ratas , Ratas Sprague-Dawley , Convulsiones/etiología , Convulsiones/metabolismo , Convulsiones/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA