Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pharm Res ; 39(2): 411-421, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35119593

RESUMEN

PURPOSE: Industrial implementation of continuous oral solid dosage form manufacturing has been impeded by the poor powder flow properties of many active pharmaceutical ingredients (APIs). Microfluidic droplet-based particle synthesis is an emerging particle engineering technique that enables the production of neat or composite microparticles with precise control over key attributes that affect powder flowability, such as particle size distribution, particle morphology, composition, and the API's polymorphic form. However, the powder properties of these microparticles have not been well-studied due to the limited mass throughputs of available platforms. In this work, we produce spherical API and API-composite microparticles at high mass throughputs, enabling characterization and comparison of the bulk powder flow properties of these materials and greater understanding of how particle-scale attributes correlate with powder rheology. METHODS: A multi-channel emulsification device and an extractive droplet-based method are harnessed to synthesize spherical API and API-excipient particles of artemether. As-received API and API crystallized in the absence of droplet confinement are used as control cases. Particle attributes are characterized for each material and correlated with a comprehensive series of powder rheology tests. RESULTS: The droplet-based processed artemether particles are observed to be more flowable, less cohesive, and less compressible than conventionally synthesized artemether powder. Co-processing the API with polycaprolactone to produce composite microparticles reduces the friction of the powder on stainless steel, a common equipment material. CONCLUSIONS: Droplet-based extractive solidification is an attractive particle engineering technique for improving powder processing and may aid in the implementation of continuous solid dosage form manufacturing.


Asunto(s)
Antimaláricos/química , Arteméter/química , Excipientes/química , Técnicas Analíticas Microfluídicas , Poliésteres/química , Cristalización , Composición de Medicamentos , Emulsiones , Fricción , Polvos , Reología
3.
Adv Healthc Mater ; 7(3)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28961377

RESUMEN

This study presents a novel droplet-templated antisolvent spherical crystallization method applicable to both hydrophilic and hydrophobic drugs. In both cases, an alginate hydrogel binder forms in situ, concurrently with the crystallization process, effectively binding the drug crystals into monodisperse spheres. This study presents a detailed process description with mass transfer modeling, and with characterization of the obtained alginate/drug spheres in terms of morphology, composition, and drug loading. Although glycine and carbamazepine are used as model hydrophilic and hydrophobic drugs, this method is easily generalized to other drugs, and offers several benefits such as minimal thermal impact, fast crystallization rates, high drug-binder loading ratios, and high selectivity toward metastable polymorphs.


Asunto(s)
Cristalización , Preparaciones Farmacéuticas/química , Excipientes/química , Interacciones Hidrofóbicas e Hidrofílicas , Solubilidad , Solventes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA