Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 97(4): e0194822, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36971544

RESUMEN

Adeno-associated virus (AAV) vectors are one of the leading platforms for gene delivery for the treatment of human genetic diseases, but the antiviral cellular mechanisms that interfere with optimal transgene expression are incompletely understood. Here, we performed two genome-scale CRISPR screens to identify cellular factors that restrict transgene expression from recombinant AAV vectors. Our screens revealed several components linked to DNA damage response, chromatin remodeling, and transcriptional regulation. Inactivation of the Fanconi anemia gene FANCA; the human silencing hub (HUSH)-associated methyltransferase SETDB1; and the gyrase, Hsp90, histidine kinase, and MutL (GHKL)-type ATPase MORC3 led to increased transgene expression. Moreover, SETDB1 and MORC3 knockout improved transgene levels of several AAV serotypes as well as other viral vectors, such as lentivirus and adenovirus. Finally, we demonstrated that the inhibition of FANCA, SETDB1, or MORC3 also enhanced transgene expression in human primary cells, suggesting that they could be physiologically relevant pathways that restrict AAV transgene levels in therapeutic settings. IMPORTANCE Recombinant AAV (rAAV) vectors have been successfully developed for the treatment of genetic diseases. The therapeutic strategy often involves the replacement of a defective gene by the expression of a functional copy from the rAAV vector genome. However, cells possess antiviral mechanisms that recognize and silence foreign DNA elements thereby limiting transgene expression and its therapeutic effect. Here, we utilize a functional genomics approach to uncover a comprehensive set of cellular restriction factors that inhibit rAAV-based transgene expression. Genetic inactivation of selected restriction factors increased rAAV transgene expression. Hence, modulation of identified restriction factors has the potential to enhance AAV gene replacement therapies.


Asunto(s)
Factores de Restricción Antivirales , Dependovirus , Vectores Genéticos , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Dependovirus/genética , Dependovirus/inmunología , Factores de Restricción Antivirales/genética , Factores de Restricción Antivirales/metabolismo , Transgenes/genética , Regulación Viral de la Expresión Génica/genética , Células A549 , Células K562 , Técnicas de Inactivación de Genes , Células Cultivadas , Humanos , Anemia de Fanconi/genética
2.
Bio Protoc ; 10(8): e3597, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33659563

RESUMEN

Expression levels of cellular proteins can be affected by various perturbations, such as genetic knockout of interactors, drug treatments or cell stress. To specifically measure the effects on protein levels post-synthesis under different experimental conditions, it is important to compensate for transcriptional and other upstream changes. Here, we provide a protocol for a dual-fluorescence flowcytometry-based assay to determine protein levels. The protein of interest is genetically linked to enhanced GFP (eGFP) followed by a viral 2A self-cleaving peptide sequence and mCherry. As a result, translation of the reporter construct leads to two fluorescent protein products from the same mRNA template, which enables unambiguous protein expression analysis with normalization across samples.

3.
Elife ; 82019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31516121

RESUMEN

Flaviviruses translate their genomes as multi-pass transmembrane proteins at the endoplasmic reticulum (ER) membrane. Here, we show that the ER membrane protein complex (EMC) is indispensable for the expression of viral polyproteins. We demonstrated that EMC was essential for accurate folding and post-translational stability rather than translation efficiency. Specifically, we revealed degradation of NS4A-NS4B, a region rich in transmembrane domains, in absence of EMC. Orthogonally, by serial passaging of virus on EMC-deficient cells, we identified two non-synonymous point mutations in NS4A and NS4B, which rescued viral replication. Finally, we showed a physical interaction between EMC and viral NS4B and that the NS4A-4B region adopts an aberrant topology in the absence of the EMC leading to degradation. Together, our data highlight how flaviviruses hijack the EMC for transmembrane protein biogenesis to achieve optimal expression of their polyproteins, which reinforces a role for the EMC in stabilizing challenging transmembrane proteins during synthesis.


Asunto(s)
Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Flavivirus/crecimiento & desarrollo , Expresión Génica , Interacciones Huésped-Patógeno , Proteínas de la Membrana/metabolismo , Poliproteínas/biosíntesis , Línea Celular , Hepatocitos/virología , Humanos , Procesamiento Proteico-Postraduccional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA