Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Life Sci Alliance ; 7(11)2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39242155

RESUMEN

Sickle cell disease (SCD) is the most common inherited monogenetic disorder. Chronic and acute pain are hallmark features of SCD involving neural and vascular injury and inflammation. Mast cells reside in the vicinity of nerve fibers and vasculature, but how they influence these structures remains unknown. We therefore examined the mechanism of mast cell activation in a sickle microenvironment replete with cell-free heme and inflammation. Mast cells exposed to this environment showed an explosion of nuclear contents with the release of citrullinated histones, suggestive of mast cell extracellular trap (MCET) release. MCETs interacted directly with the vasculature and nerve fibers, a cause of vascular and neural injury in sickle cell mice. MCET formation was dependent upon peptidylarginine deiminase 4 (PAD4). Inhibition of PAD4 ameliorated vasoocclusion, chronic and acute hyperalgesia, and inflammation in sickle mice. PAD4 activation may also underlie neutrophil trap formation in SCD, thus providing a novel target to treat the sequelae of vascular and neural injury in SCD.


Asunto(s)
Anemia de Células Falciformes , Trampas Extracelulares , Hiperalgesia , Mastocitos , Arginina Deiminasa Proteína-Tipo 4 , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/metabolismo , Animales , Hiperalgesia/metabolismo , Hiperalgesia/etiología , Trampas Extracelulares/metabolismo , Ratones , Mastocitos/metabolismo , Arginina Deiminasa Proteína-Tipo 4/metabolismo , Humanos , Masculino , Modelos Animales de Enfermedad , Inflamación/metabolismo , Ratones Endogámicos C57BL , Neutrófilos/metabolismo
2.
J Thromb Haemost ; 21(5): 1366-1380, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36738826

RESUMEN

BACKGROUND: Vascular activation is characterized by increased proinflammatory, pro thrombotic, and proadhesive signaling. Several chronic and acute conditions, including Bcr-abl-negative myeloproliferative neoplasms (MPNs), graft-vs-host disease, and COVID-19 have been noted to have increased activation of the janus kinase (JAK)-signal transducer and downstream activator of transcription (STAT) pathways. Two notable inhibitors of the JAK-STAT pathway are ruxolitinib (JAK1/2 inhibitor) and fedratinib (JAK2 inhibitor), which are currently used to treat MPN patients. However, in some conditions, it has been noted that JAK inhibitors can increase the risk of thromboembolic complications. OBJECTIVES: We sought to define the anti-inflammatory and antithrombotic effects of JAK-STAT inhibitors in vascular endothelial cells. METHODS: We assessed endothelial activation in the presence or absence of ruxolitinib or fedratinib by using immunoblots, immunofluorescence, qRT-PCR, and function coagulation assays. Finally, we used endothelialized microfluidics perfused with blood from normal and JAK2V617F+ individuals to evaluate whether ruxolitinib and fedratinib changed cell adhesion. RESULTS: We found that both ruxolitinib and fedratinib reduced endothelial cell phospho-STAT1 and STAT3 signaling and attenuated nuclear phospho-NK-κB and phospho-c-Jun localization. JAK-STAT inhibition also limited secretion of proadhesive and procoagulant P-selectin and von Willebrand factor and proinflammatory IL-6. Likewise, we found that JAK-STAT inhibition reduced endothelial tissue factor and urokinase plasminogen activator expression and activity. CONCLUSIONS: By using endothelialized microfluidics perfused with whole blood samples, we demonstrated that endothelial treatment with JAK-STAT inhibitors prevented rolling of both healthy control and JAK2V617F MPN leukocytes. Together, these findings demonstrate that JAK-STAT inhibitors reduce the upregulation of critical prothrombotic pathways and prevent increased leukocyte-endothelial adhesion.


Asunto(s)
COVID-19 , Quinasas Janus , Humanos , Quinasas Janus/metabolismo , Quinasas Janus/farmacología , Transducción de Señal , Células Endoteliales/metabolismo , Factores de Transcripción STAT/metabolismo , Factores de Transcripción STAT/farmacología , Janus Quinasa 2 , Leucocitos/metabolismo
3.
Neurosci Lett ; 744: 135601, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-33387660

RESUMEN

We examined the association between endogenous opioid ß-endorphin, cancer progression and pain in a transgenic mouse model of breast cancer, with a rat C3(1) simian virus 40 large tumor antigen fusion gene (C3TAg). C3TAg mice develop ductal epithelial atypia at 8 weeks, progression to intra-epithelial neoplasia at 12 weeks, and invasive carcinoma with palpable tumors at 16 weeks. Consistent with invasive carcinoma at 4 months of age, C3TAg mice demonstrate a significant increase in hyperalgesia compared to younger C3TAg or control FVBN mice without tumors. Our data show that the growing tumor contributes to circulating ß-endorphin. As an endogenous ligand of mu opioid receptor, ß-endorphin has analgesic activity. Paradoxically, we observed an increase in pain in transgenic breast cancer mice with significantly high circulating and tumor-associated ß-endorphin. Increased circulating ß-endorphin correlates with increasing tumor burden. ß-endorphin induced the activation of mitogenic and survival-promoting signaling pathways, MAPK/ERK 1/2, STAT3 and Akt, observed by us in human MDA-MB-231 cells suggesting a role for ß-endorphin in breast cancer progression and associated pain.


Asunto(s)
Neoplasias de la Mama/sangre , Neoplasias de la Mama/diagnóstico , Dolor en Cáncer/sangre , Dolor en Cáncer/diagnóstico , Progresión de la Enfermedad , betaendorfina/sangre , Animales , Biomarcadores/sangre , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Transgénicos
4.
Front Immunol ; 11: 613278, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33542720

RESUMEN

Heme, released from red blood cells in sickle cell disease (SCD), interacts with toll-like receptor 4 (TLR4) to activate NF-κB leading to the production of cytokines and adhesion molecules which promote inflammation, pain, and vaso-occlusion. In SCD, TLR4 inhibition has been shown to modulate heme-induced microvascular stasis and lung injury. We sought to delineate the role of endothelial verses hematopoietic TLR4 in SCD by developing a TLR4 null transgenic sickle mouse. We bred a global Tlr4-/- deficiency state into Townes-AA mice expressing normal human adult hemoglobin A and Townes-SS mice expressing sickle hemoglobin S. SS-Tlr4-/- had similar complete blood counts and serum chemistries as SS-Tlr4+/+ mice. However, SS-Tlr4-/- mice developed significantly less microvascular stasis in dorsal skin fold chambers than SS-Tlr4+/+ mice in response to challenges with heme, lipopolysaccharide (LPS), and hypoxia/reoxygenation (H/R). To define a potential mechanism for decreased microvascular stasis in SS-Tlr4-/- mice, we measured pro-inflammatory NF-κB and adhesion molecules in livers post-heme challenge. Compared to heme-challenged SS-Tlr4+/+ livers, SS-Tlr4-/- livers had lower adhesion molecule and cytokine mRNAs, NF-κB phospho-p65, and adhesion molecule protein expression. Furthermore, lung P-selectin and von Willebrand factor immunostaining was reduced. Next, to establish if endothelial or hematopoietic cell TLR4 signaling is critical to vaso-occlusive physiology, we created chimeric mice by transplanting SS-Tlr4-/- or SS-Tlr4+/+ bone marrow into AA-Tlr4-/- or AA-Tlr4+/+ recipients. Hemin-stimulated microvascular stasis was significantly decreased when the recipient was AA-Tlr4-/- . These data demonstrate that endothelial, but not hematopoietic, TLR4 expression is necessary to initiate vaso-occlusive physiology in SS mice.


Asunto(s)
Anemia de Células Falciformes/metabolismo , Endotelio/metabolismo , Hemoglobina A/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Eritrocitos/metabolismo , Femenino , Hematopoyesis/fisiología , Hemo/metabolismo , Hemoglobina Falciforme/metabolismo , Humanos , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microvasos , FN-kappa B/metabolismo , Transducción de Señal/fisiología , Factor de Transcripción ReIA/metabolismo
5.
Front Cell Neurosci ; 13: 56, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30837844

RESUMEN

Endothelial dysfunction underlies the pathobiology of cerebrovascular disease. Mast cells are located in close proximity to the vasculature, and vasoactive mediators released upon their activation can promote endothelial activation leading to blood brain barrier (BBB) dysfunction. We examined the mechanism of mast cell-induced endothelial activation via endoplasmic reticulum (ER) stress mediated P-selectin expression in a transgenic mouse model of sickle cell disease (SCD), which shows BBB dysfunction. We used mouse brain endothelial cells (mBECs) and mast cells-derived from skin of control and sickle mice to examine the mechanisms involved. Compared to control mouse mast cell conditioned medium (MCCM), mBECs incubated with sickle mouse MCCM showed increased, structural disorganization and swelling of the ER and Golgi, aggregation of ribosomes, ER stress marker proteins, accumulation of galactose-1-phosphate uridyl transferase, mitochondrial dysfunction, reactive oxygen species (ROS) production, P-selectin expression and mBEC permeability. These effects of sickle-MCCM on mBEC were inhibited by Salubrinal, a reducer of ER stress. Histamine levels in the plasma, skin releasate and in mast cells of sickle mice were higher compared to control mice. Compared to control BBB permeability was increased in sickle mice. Treatment of mice with imatinib, Salubrinal, or P-selectin blocking antibody reduced BBB permeability in sickle mice. Mast cells induce endothelial dysfunction via ER stress-mediated P-selectin expression. Mast cell activation contributes to ER stress mediated endothelial P-selectin expression leading to increased endothelial permeability and impairment of BBB. Targeting mast cells and/or ER stress has the potential to ameliorate endothelial dysfunction in SCD and other pathobiologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA