Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Microbiol ; 25(2): 229-240, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36482161

RESUMEN

The importance of host-associated microorganisms and their biotic interactions for plant health and performance has been increasingly acknowledged. Protists, main predators and regulators of bacteria and fungi, are abundant and ubiquitous eukaryotes in terrestrial ecosystems. Protists are considered to benefit plant health and performance, but the community structure and functions of plant-associated protists remain surprisingly underexplored. Harnessing plant-associated protists and other microbes can potentially enhance plant health and productivity and sustain healthy food and agriculture systems. In this review, we summarize the knowledge of multifunctionality of protists and their interactions with other microbes in plant hosts, and propose a future framework to study plant-associated protists and utilize protists as agrifood tools for benefiting agricultural production.


Asunto(s)
Ecosistema , Eucariontes , Plantas , Hongos/genética , Agricultura , Microbiología del Suelo
2.
Environ Microbiol ; 23(12): 7661-7670, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34097804

RESUMEN

Termites are pivotal ecosystem engineers in tropical and subtropical habitats, where they construct massive nests ('mounds') that substantially modify soil properties and promote nutrient cycling. Yet, little is known about the roles of termite nesting activity in regulating the spread of antimicrobial resistance (AMR), one of the major Global Health challenges. Here, we conducted a large-scale (> 1500 km) investigation in northern Australia and found distinct resistome profiles in termite mounds and bulk soils. By profiling a wide spectrum of ARGs, we found that the abundance and diversity of antibiotic resistance genes (ARGs) were significantly lower in termite mounds than in bulk soils (P < 0.001). The proportion of efflux pump ARGs was significantly lower in termite mound resistome than in bulk soil resistome (P < 0.001). The differences in resistome profiles between termite mounds and bulk soils may result from the changes in microbial interactions owing to the substantial increase in pH and nutrient availability induced by termite nesting activities. These findings advance our understanding of the profile of ARGs in termite mounds, which is a crucial step to evaluate the roles of soil faunal activity in regulating soil resistome under global environmental change.


Asunto(s)
Isópteros , Animales , Australia , Ecosistema , Isópteros/genética , Suelo , Microbiología del Suelo
3.
Environ Microbiol ; 23(12): 7688-7700, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34407308

RESUMEN

Understanding the current and future distributions of plant pathogens is critical to predict the plant performance and related economic benefits in the changing environment. Yet, little is known about the roles of environmental drivers in shaping the profiles of fungal plant pathogens in phyllosphere, an important habitat of microbiomes on Earth. Here, using a large-scale investigation of Eucalyptus phyllospheric microbiomes in Australia and the multiple linear regression model, we show that precipitation is the most important predictor of fungal taxonomic diversity and abundance. The abundance of fungal plant pathogens in phyllosphere exhibited a positive linear relationship with precipitation. With this empirical dataset, we constructed current and future atlases of phyllosphere plant pathogens to estimate their spatial distributions under different climate change scenarios. Our atlases indicate that the abundance of fungal plant pathogens would increase especially in the coastal regions with up to 100-fold increase compared with the current abundance. These findings advance our understanding of the distributions of fungal plant pathogens in phyllospheric microbiomes under the climate change, which can improve our ability to predict and mitigate their impacts on plant productivity and economic losses.


Asunto(s)
Eucalyptus , Microbiota , Cambio Climático , Hongos/genética , Plantas
4.
Environ Microbiol ; 23(5): 2659-2668, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33817921

RESUMEN

Termites are ubiquitous insects in tropical and subtropical habitats, and some of them construct massive nests ('mounds'), which substantially promote substrate heterogeneity by altering soil properties. Yet, the role of termite nesting process in regulating the distribution and diversity of soil microbial communities remains poorly understood, which introduces uncertainty in predictions of ecosystem functions of termite mounds in a changing environment. Here, by using amplicon sequencing, we conducted a survey of 134 termite mounds across >1500 km in northern Australia and found that termite mounds significantly differed from bulk soils in the microbial diversity and community compositions. Compared with bulk soils, termite nesting process decreased the microbial diversity and the relative abundance of rare taxa. Rare taxa had a narrower habitat niche breadth than dominant taxa and might be easier to be filtered by the potential intensive microbial competition during the nesting processes. We further demonstrated that the shift in pH induced by termite nesting process was a major driver shaping the microbial community profiles in termite mounds. Together, our work provides novel evidence that termite nesting is an important process in regulating soil microbial diversity, which advances our understanding of the functioning of termite mounds.


Asunto(s)
Isópteros , Microbiota , Animales , Insectos , Microbiota/genética , Suelo , Microbiología del Suelo
5.
J Hazard Mater ; 401: 123347, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33113713

RESUMEN

Dioxin compounds are persistent carcinogenic byproducts of anthropogenic activities such as waste combustion and other industrial activities. The ubiquitous distribution of dioxins is global concerns these days. Among of recent techniques, bioremediation, an eco-friendly and cost-effective technology, uses bacteria or fungi to detoxify in dioxins; however, not many bacteria can degrade the most toxic dioxin congener 2,3,7,8-tetrachlorinated dibenzo-p-dioxin (TCDD). In this study, the endophytic bacterium Burkholderia cenocapacia 869T2 was capable of TCDD degradation by nearly 95 % after one-week of an aerobic incubation. Through transcriptomic analysis of the strain 869T2 at 6 -h and 12 -h TCDD exposure, a number of catabolic genes involved in dioxin metabolism were detected with high gene expressions in the presence of TCDD. The transcriptome data also indicated that B. cenocepacia strain 869T2 metabolized the dioxin compounds from an early phase (at 6 h) of the incubation, and the initial outline for a general dioxin degradation pathway were proposed. One of the catabolic genes, l-2-haloacid dehalogenase (2-HAD) was cloned to investigate its contribution in dioxin dehalogenation. By detecting the increasing concentration of chloride ions released from TCDD, our results indicated that the dehalogenase played a crucial role in dehalogenation of dioxin in the aerobic condition.


Asunto(s)
Burkholderia cenocepacia , Dioxinas , Dibenzodioxinas Policloradas , Biodegradación Ambiental , Hidrolasas
6.
Sci Total Environ ; 705: 135882, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-31818598

RESUMEN

The emergence, evolution and spread of antibiotic resistance genes (ARGs) in the environment represent a global threat to human health. Our knowledge of antibiotic resistance in human-impacted ecosystems is rapidly growing with antibiotic use, organic fertilization and wastewater irrigation identified as key selection pressures. However, the importance of biological interactions, especially predation and competition, as a potential driver of antibiotic resistance in the natural environment with limited anthropogenic disturbance remains largely overlooked. Stress-affected bacteria develop resistance to maximize competition and survival, and similarly bacteria may develop resistance to fight stress under the predation pressure of protists, an essential component of the soil microbiome. In this article, we summarized the major findings for the prevalence of natural ARGs on our planet and discussed the potential selection pressures driving the evolution and development of antibiotic resistance in natural settings. This is the first article that reviewed the potential links between protists and the antibiotic resistance of bacteria, and highlighted the importance of predation by protists as a crucial selection pressure of antibiotic resistance in the absence of anthropogenic disturbance. We conclude that an improved ecological understanding of the protists-bacteria interactions and other biological relationships would greatly expand our ability to predict and mitigate the environmental antibiotic resistance under the context of global change.


Asunto(s)
Suelo , Antibacterianos , Bacterias , Farmacorresistencia Microbiana , Genes Bacterianos , Humanos , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA