Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(29): e202304013, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37141510

RESUMEN

The catalytic enantioselective synthesis of α-chiral alkenes and alkynes represents a powerful strategy for rapid generation of molecular complexity. Herein, we report a transient directing group (TDG) strategy to facilitate site-selective palladium-catalyzed reductive Heck-type hydroalkenylation and hydroalkynylation of alkenylaldehyes using alkenyl and alkynyl bromides, respectively, allowing for construction of a stereocenter at the δ-position with respect to the aldehyde. Computational studies reveal the dual beneficial roles of rigid TDGs, such as L-tert-leucine, in promoting TDG binding and inducing high levels of enantioselectivity in alkene insertion with a variety of migrating groups.

2.
J Am Chem Soc ; 144(46): 21398-21407, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36346461

RESUMEN

Chemical synthesis of natural products is typically inspired by the structure and function of a target molecule. When both factors are of interest, such as in the case of taxane diterpenoids, a synthesis can both serve as a platform for synthetic strategy development and enable new biological exploration. Guided by this paradigm, we present here a unified enantiospecific approach to diverse taxane cores from the feedstock monoterpenoid (S)-carvone. Key to the success of our approach was the use of a skeletal remodeling strategy which began with the divergent reorganization and convergent coupling of two carvone-derived fragments, facilitated by Pd-catalyzed C-C bond cleavage tactics. This coupling was followed by additional restructuring using a Sm(II)-mediated rearrangement and a bioinspired, visible-light induced, transannular [2 + 2] photocycloaddition. Overall, this divergent monoterpenoid remodeling/convergent fragment coupling approach to complex diterpenoid synthesis provides access to structurally disparate taxane cores which have set the stage for the preparation of a wide range of taxanes.


Asunto(s)
Monoterpenos , Taxoides , Estereoisomerismo
3.
Chembiochem ; 22(15): 2540-2545, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-33890354

RESUMEN

Urinary tract infections (UTIs) are caused by bacteria growing in complex, multicellular enclosed aggregates known as biofilms. Recently, a zwitterionic cellulose derivative produced in Escherichia coli (E. coli) was determined to play an important role in the formation and assembly of biofilms. In order to produce a minimal, yet structurally defined tool compound to probe the biology of the naturally occurring polymer, we have synthesized a zwitterionic phosphoethanolamine cellobiose (pEtN cellobiose) and evaluated its biofilm activity in the Gram-negative bacterium E. coli, a pathogen implicated in the pathogenesis of UTIs. The impact of synthetic pEtN cellobiose on biofilm formation was examined via colorimetric assays which revealed an increase in cellular adhesion to an abiotic substrate compared to untreated samples. Additionally, Congo red binding assays indicate that culturing E. coli in the presence of pEtN cellobiose enhances Congo Red binding to bacterial cells. These results reveal new opportunities to study the impact glycopolymers have on cellular adhesion in Gram-negative pathogens.


Asunto(s)
Escherichia coli
4.
J Org Chem ; 85(24): 16128-16135, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-32996317

RESUMEN

Alongside Edward, Lemieux was among the earliest researchers studying negative hyperconjugation (i.e., the anomeric effect) or the preference for gauche conformations about the C1-O5 bond in carbohydrates. Lemieux also studied an esoteric, if not controversial, theory known as the reverse anomeric effect (RAE). This theory is used to rationalize scenarios where predicted anomeric stabilization does not occur. One such example is the Kochetkov amination where reducing end amines exist solely as the ß-anomer. Herein, we provide a brief account of Lemieux's contributions to the field of stereoelectronics and apply this knowledge toward the synthesis of ß-amino human milk oligosaccharides (ßΑ-HMOs). These molecules were evaluated for their ability to inhibit growth and biofilm production in Group B Streptococcus (GBS) and Staphylococcus aureus. While the parent HMOs lacked antimicrobial and antibiofilm activity, their ß-amino derivatives significantly inhibited biofilm formation in both species. Field emission gun-scanning single electron microscopy (FEG-SEM) revealed that treatment with ß-amino HMOs significantly inhibits bacterial adherence and eliminates the ability of both microbes to form biofilms.


Asunto(s)
Biopelículas , Leche Humana , Microscopía Electrónica de Rastreo , Oligosacáridos/farmacología , Staphylococcus aureus
5.
Carbohydr Res ; 514: 108530, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35263695

RESUMEN

Presented herein is the synthesis of the Aeromonas veronii disaccharide repeating unit which has been achieved in 11 steps starting from d-fucose and d-galactosamine.


Asunto(s)
Aeromonas veronii , Aeromonas , Disacáridos , Fucosa
6.
Org Lett ; 23(15): 5922-5926, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34314177

RESUMEN

Zwitterionic carbohydrate modifications, such as phosphoethanolamine (PEtN), govern host-pathogen interactions. Whereas it is recognized that these modifications stimulate the host immune system, the purpose of PEtN modification remains largely descriptive. As an enabling step toward studying this carbohydrate modification, we report a synthesis of the P. temperata zwitterionic trisaccharide repeating unit. The 32-step synthesis was enabled by H-phosphonate chemistry to install the PEtN arm on a poorly reactive and sterically hindered C4-alcohol.


Asunto(s)
Etanolaminas/síntesis química , Photorhabdus/química , Trisacáridos/síntesis química , Etanolaminas/química , Estructura Molecular , Trisacáridos/química
7.
Medchemcomm ; 10(8): 1231-1241, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31534648

RESUMEN

Staphylococcus aureus (S. aureus) is an asymptomatic colonizer of 30% of all human beings. While generally benign, antibiotic resistance contributes to the success of S. aureus as a human pathogen. Resistance is rapidly evolved through a wide portfolio of mechanisms including horizontal gene transfer and chromosomal mutation. In addition to traditional resistance mechanisms, a special feature of S. aureus pathogenesis is its ability to survive on both biotic and abiotic surfaces in the biofilm state. Due to this characteristic, S. aureus is a leading cause of human infection. Methicillin-resistant S. aureus (MRSA) in particular has emerged as a widespread cause of both community- and hospital-acquired infections. Currently, MRSA is responsible for 10-fold more infections than all multi-drug resistant (MDR) Gram-negative pathogens combined. Recently, MRSA was classified by the World Health Organization (WHO) as one of twelve priority pathogens that threaten human health. In this targeted mini-review, we discuss MRSA biofilm production, the relationship of biofilm production to antibiotic resistance, and front-line techniques to defeat the biofilm-resistance system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA