Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Emerg Infect Dis ; 29(6): 1285-1288, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37130504

RESUMEN

We report a case of a 53-year-old HIV-negative patient in San Francisco, California, USA, with no classic mpox prodromal symptoms or skin lesions who experienced fulminant, vision-threatening scleritis, keratitis, and uveitis. Deep sequence analysis identified monkeypox virus RNA in the aqueous humor. We confirmed the virus on the cornea and sclera by PCR.


Asunto(s)
Mpox , Estados Unidos/epidemiología , Humanos , Persona de Mediana Edad , Cara , Reacción en Cadena de la Polimerasa , Síntomas Prodrómicos , ARN Viral
2.
Curr Atheroscler Rep ; 24(5): 323-336, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35332444

RESUMEN

PURPOSE OF REVIEW: As both a cholesterol acceptor and carrier in the reverse cholesterol transport (RCT) pathway, high-density lipoprotein (HDL) is putatively atheroprotective. However, current pharmacological therapies to increase plasma HDL cholesterol (HDL-c) concentration have paradoxically failed to prevent or reduce atherosclerosis and cardiovascular disease (CVD). Given that free cholesterol (FC) transfer between surfaces of lipoproteins and cells is reversible, excess plasma FC can be transferred to the cells of peripheral tissue sites resulting in atherosclerosis. Here, we summarize potential mechanisms contributing to this paradox and highlight the role of excess free cholesterol (FC) bioavailability in atherosclerosis vs. atheroprotection. RECENT FINDINGS: Recent findings have established a complex relationship between HDL-c concentration and atherosclerosis. Systemic scavenger receptor class B type 1 (SR-B1) knock out (KO) mice exhibit with increased diet-induced atherosclerosis despite having an elevated plasma HDL-c concentration compared to wild type (WT) mice. The greater bioavailability of HDL-FC in SR-B1 vs. WT mice is associated with a higher FC content in multiple cell types and tissue sites. These results suggest that dysfunctional HDL with high FC bioavailability is atheroprone despite high HDL-c concentration. Past oversimplification of HDL-c involvement in cholesterol transport has led to the failures in HDL targeted therapy. Evidence suggests that FC-mediated functionality of HDL is of higher importance than its quantity; as a result, deciphering the regulatory mechanisms by which HDL-FC bioavailability can induce atherosclerosis can have far-reaching clinical implications.


Asunto(s)
Aterosclerosis , Colesterol , Animales , Aterosclerosis/metabolismo , Colesterol/metabolismo , HDL-Colesterol , Humanos , Lipoproteínas HDL/metabolismo , Ratones , Ratones Noqueados , Receptores Depuradores de Clase B/genética , Receptores Depuradores de Clase B/metabolismo
3.
Biosci Biotechnol Biochem ; 86(12): 1615-1622, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36222757

RESUMEN

ß-sitosterol derived from Clinacanthus nutans Lindau was tested for its in vitro osteogenic activity using MC3T3-E1 pre-osteoblasts. Our results indicated that ß-sitosterol was non-toxic to the cells cultured at a concentration <20 µg/mL. Treatment of the cells with ß-sitosterol significantly enhanced the alkaline phosphatase activity up to 210 and 204.6% at 5 and 10 µg/mL, respectively (P < .05). Similarly, the mineralization activity of the ß-sitosterol treated cells was elevated up to 134, 168, 118% at a concentration of 2.5, 5, and 10 µg/mL, respectively (P < .05). In addition, this compound up-regulated several marker genes for osteoblast differentiation, including runx2, osx and col I to 2, 2.5 and 5.6 folds at 10 µg/mL, respectively (P < .05). The expression of p38 and ERK proteins involved in the MAPK signal pathway related to mineralization and differentiation was also enhanced. Thus, the osteoblastogenic activity of ß-sitosterol was fully illustrated for the first time.


Asunto(s)
Osteoblastos , Osteogénesis , Regulación hacia Arriba , Diferenciación Celular , Osteoblastos/metabolismo
4.
Retina ; 42(6): 1176-1183, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35594078

RESUMEN

PURPOSE: To investigate the efficacy and safety of photodynamic therapy (PDT) in the treatment of choroidal metastasis. METHODS: We conducted a systematic review of all reported cases of choroidal metastases treated with PDT in literature, and included the cases from our institution, for a comprehensive meta-analysis. RESULTS: We identified 52 tumors in 40 eyes of 34 patients. The mean age was 60 years (range 28-77). The mean tumor thickness was 1.9 mm (range 0-4.8 mm), whereas the mean largest basal diameter was 8.2 mm (range 1.5-30 mm) on presentation. After an average of 1.4 treatment visit, PDT resulted in decreased tumor thickness (mean 1.9 mm before vs. 1.0 mm after PDT, P < 0.0001) and decreased central macular thickness (mean 454 µm before vs. 289 µm after PDT, P = 0.03). After PDT, 82% of tumors had reduced thickness, and subretinal fluid resolved in 75% of eyes. Photodynamic therapy also resulted in stable or improved vision in 78% of treated eyes (logMAR 0.50 before vs. 0.56 after PDT, P = 0.54). No adverse events were reported, and PDT was effective in treating the most common choroidal metastases (tumor control rate of 94% in 16 lung adenocarcinoma and 92% in 26 breast carcinoma metastasis cases). CONCLUSION: Photodynamic therapy is effective at controlling tumors and preserving vision in patients with some choroidal metastases. Because of its minimal time commitment and good safety profile, PDT should be considered as a potential first-line treatment for small choroidal metastases.


Asunto(s)
Fotoquimioterapia , Porfirinas , Adulto , Anciano , Angiografía con Fluoresceína , Humanos , Persona de Mediana Edad , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/uso terapéutico , Estudios Retrospectivos , Tomografía de Coherencia Óptica/métodos , Resultado del Tratamiento , Verteporfina/uso terapéutico , Agudeza Visual
5.
J Am Chem Soc ; 143(1): 163-175, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33347315

RESUMEN

The solid-state properties of organic radicals depend on radical-radical interactions that are influenced by the superstructure of the crystalline phase. Here, we report the synthesis and characterization of a substituted tetracationic cyclophane, cyclobis(paraquat-p-1,4-dimethoxyphenylene), which associates in its bisradical dicationic redox state with the methyl viologen radical cation (MV•+) to give a 1:1 inclusion complex. The (super)structures of the reduced cyclophane and this 1:1 complex in the solid state deviate from the analogous (super)structures observed for the reduced state of cyclobis(paraquat-p-phenylene) and that of its trisradical tricationic complex. Titration experiments reveal that the methoxy substituents on the p-phenylene linkers do not influence binding of the cyclophane toward small neutral guests-such as dimethoxybenzene and tetrathiafulvalene-whereas binding of larger radical cationic guests such as MV•+ by the reduced cyclophane decreases 10-fold. X-ray diffraction analysis reveals that the solid-state superstructure of the 1:1 complex constitutes a discrete entity with weak intermolecular orbital overlap between neighboring complexes. Transient nutation EPR experiments and DFT calculations confirm that the complex has a doublet spin configuration in the ground state as a result of the strong orbital overlap, while the quartet-state spin configuration is higher in energy and inaccessible at ambient temperature. Superconducting quantum interference device (SQUID) measurements reveal that the trisradical tricationic complexes interact antiferromagnetically and form a one-dimensional Heisenberg antiferromagnetic chain along the a-axis of the crystal. These results offer insights into the design and synthesis of organic magnetic materials based on host-guest complexes.

6.
J Am Chem Soc ; 142(39): 16600-16609, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32865399

RESUMEN

The phenomenon of photon upconversion, in which a system absorbs two or more photons of lower energy and emits a photon of higher energy, has been used in numerous applications, including non-destructive bioimaging, deep-penetrating photodynamic therapy, catalysis, and photovoltaic devices. To date, photon upconversion has been observed typically in inorganic nanocrystals, nanoparticles, metal-organic frameworks, supramolecular assemblies, and organic dyads. Herein, we demonstrate a new strategy for harnessing photon upconversion-supramolecular upconversion-based on host-guest chemistry. We have identified a box-like fluorescent tetracationic host incorporating a thiazolothiazole emitter, which can accommodate a guest-sensitizer, 5,15-diphenylporphyrin, inside its cavity, and demonstrated that the host-guest inclusion complex displays triplet-fusion upconversion when the guest is excited with low-energy light. The strategy of supramolecular upconversion has been employed successfully in two other host-guest complexes-with hosts comprised of anthracene emitters and a 5,15-diphenylporphyrin guest-corroborating the fact that this strategy is a general one and can be applied to the design of a new family of host-guest complexes for photon upconversion. More importantly, supramolecular upconversion is accessible in solution under dilute conditions (µM) compared to most of the existing approaches that require significantly higher concentrations (mM) of emitters and/or sensitizers. Transient absorption spectroscopy and density functional theory have been employed in order to confirm a triplet-fusion upconversion mechanism. Host-guest complexation-mediated supramolecular photon upconversion eliminates multiple issues in the existing systems related to high working concentrations, high incident laser power, and low optical penetration depths.

7.
J Am Chem Soc ; 142(11): 5419-5428, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32083871

RESUMEN

Synthetic macrocycles capable of undergoing allosteric regulation by responding to versatile external stimuli are the subject of increasing attention in supramolecular science. Herein, we report a structurally transformative tetracationic cyclophane containing two 3,6-bis(4-pyridyl)-l,2,4,5-tetrazine (4-bptz) units, which are linked together by two p-xylylene bridges. The cyclophane, which possesses modular redox states and structural post-modifications, can undergo two reversibly consecutive two-electron reductions, affording first its bisradical dicationic counterpart, and then subsequently the fully reduced species. Furthermore, one single-parent cyclophane can afford effectively three other new analogs through box-to-box cascade transformations, taking advantage of either reductions or an inverse electron-demand Diels-Alder (IEDDA) reaction. While all four new tetracationic cyclophanes adopt rigid and symmetric box-like conformations, their geometries in relation to size, shape, electronic properties, and binding affinities toward polycyclic aromatic hydrocarbons can be readily regulated. This structurally transformative tetracationic cyclophane performs a variety of new tasks as a result of structural post-modifications, thus serving as a toolbox for probing the radical properties and generating rapidly a range of structurally diverse cyclophanes by efficient divergent syntheses. This research lays a solid foundation for the introduction of the structurally transformative tetracationic cyclophane into the realm of mechanically interlocked molecules and will provide a toolbox to construct and operate intelligent molecular machines.

8.
J Am Chem Soc ; 142(17): 7956-7967, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32233402

RESUMEN

Collisional intermolecular interactions between excited states form short-lived dimers and complexes that lead to the emergence of excimer/exciplex emission of lower energy, a phenomenon which must be differentiated from the photoluminescence (PL) arising from the monomeric molecules. Although the utilization of noncovalent bonding interactions, leading to the generation of excimer/exciplex PL, has been investigated extensively, precise control of the aggregates and their persistence at very low concentrations remains a rare phenomenon. In the search for a fresh approach, we sought to obtain exciplex PL from permanent structures by incorporating anthracene moieties into pyridinium-containing mechanically interlocked molecules. Beyond the optical properties of the anthracene moieties, their π-extended nature enforces [π···π] stacking that can overcome the Coulombic repulsion between the pyridinium units, affording an efficient synthesis of an octacationic homo[2]catenane. Notably, upon increasing the ionic strength by adding tetrabutylammonium hexafluorophosphate, the catenane yield increases significantly as a result of the decrease in Coulombic repulsions between the pyridinium units. Although the ground-state photophysical properties of the free cyclophane and the catenane are similar and show a charge-transfer band at ∼455 nm, their PL characters are distinct, denoting different excited states. The cyclophane emits at ∼562 nm (quantum yield ϕF = 3.6%, emission lifetime τs = 3 ns in MeCN), which is characteristic of a disubstituted anthracene-pyridinium linker. By contrast, the catenane displays an exciplex PL at low concentration (10-8 M) with an emission band centered on 650 nm (ϕF = 0.5%, τs = 14 ns) in MeCN and at 675 nm in aqueous solution. Live-cell imaging performed in MIAPaCa-2 prostate cancer cells confirmed that the catenane exciplex emission can be detected at micromolar concentrations.


Asunto(s)
Antracenos/química , Humanos , Estructura Molecular
9.
Health Econ ; 29(3): 294-305, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31944480

RESUMEN

This paper focuses on the effects of a 2005 health insurance reform in Vietnam. Through this reform, public health insurance was newly offered to nonpoor children under 6 years old, but it required the use of community health facilities. This requirement potentially limited the value of the insurance. Employing difference-in-discontinuities and triple-difference methods and using data from 2002, 2004, and 2006, I show that, despite health coverage among nonpoor children increasing by nearly three times, there is little or no evidence that the reform significantly increased health care utilization, changed care locations from private to public sites, lowered out-of-pocket costs, or improved health status for nonpoor young children. My results suggest a "bypassing" phenomenon whereby nonpoor families skipped free health care at low-quality facilities.


Asunto(s)
Gastos en Salud , Seguro de Salud , Niño , Preescolar , Empleo , Estado de Salud , Humanos , Cobertura del Seguro , Vietnam
10.
Mol Cell Proteomics ; 17(4): 826-834, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29358340

RESUMEN

Proteases are in the center of many diseases, and consequently, proteases and their substrates are important drug targets as represented by an estimated 5-10% of all drugs under development. Mass spectrometry has been an indispensable tool for the discovery of novel protease substrates, particularly through the proteome-scale enrichment of so-called N-terminal peptides representing endogenous protein N termini. Methods such as combined fractional diagonal chromatography (COFRADIC)1 and, later, terminal amine isotopic labeling of substrates (TAILS) have revealed numerous insights into protease substrates and consensus motifs. We present an alternative and simple protocol for N-terminal peptide enrichment, based on charge-based fractional diagonal chromatography (ChaFRADIC) and requiring only well-established protein chemistry and a pipette tip. Using iTRAQ-8-plex, we quantified on average 2,073 ± 52 unique N-terminal peptides from only 4.3 µg per sample/channel, allowing the identification of proteolytic targets and consensus motifs. This high sensitivity may even allow working with clinical samples such as needle biopsies in the future. We applied our method to study the dynamics of staurosporine-induced apoptosis. Our data demonstrate an orchestrated regulation of specific pathways after 1.5 h, 3 h, and 6 h of treatment, with many important players of homeostasis targeted already after 1.5 h. We additionally observed an early multilevel modulation of the splicing machinery both by proteolysis and phosphorylation. This may reflect the known role of alternative splicing variants for a variety of apoptotic genes, which seems to be a driving force of staurosporine-induced apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Péptido Hidrolasas/metabolismo , Proteómica/métodos , Estaurosporina/farmacología , Línea Celular Tumoral , Cromatografía/métodos , Humanos , Espectrometría de Masas/métodos
11.
J Am Chem Soc ; 141(44): 17783-17795, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31526001

RESUMEN

Tessellation of organic polygons though [π···π] and charge-transfer (CT) interactions offers a unique opportunity to construct supramolecular organic electronic materials with 2D topologies. Our approach to exploring the 3D topology of 2D tessellations of a naphthalene diimide-based molecular triangle (NDI-Δ) reveals that the 2D molecular arrangement is sensitive to the identity of the solvent and solute concentrations. Utilization of nonhalogenated solvents, combined with careful tailoring of the concentrations, results in NDI-Δ self-assembling though [π···π] interactions into 2D honeycomb triangular and hexagonal tiling patterns. Cocrystallization of NDI-Δ with tetrathiafulvalene (TTF) leads systematically to the formation of 2D tessellations as a result of superstructure-directing CT interactions. Different solvents lead to different packing arrangements. Using MeCN, CHCl3, and CH2Cl2, we identified three sets of cocrystals, namely CT-A, CT-B, and CT-C, respectively. Solvent modulation plays a critical role in controlling not only the NDI-Δ:TTF stoichiometric ratios and the molecular arrangements in the crystal superstructures, but also prevents the inclusion of TTF guests inside the cavities of NDI-Δ. Confinement of TTF inside the NDI-Δ cavities in the CT-A superstructure enhances the CT character with the observation of a broad absorption band in the NIR region. In the CT-B superstructure, the CHCl3 lattice molecules establish a set of [Cl···Cl] and [Cl···S] intermolecular interactions, leading to the formation of a hexagonal grid of solvent in which NDI-Δ forms a triangular grid. In the CT-C superstructure, three TTF molecules self-assemble, forming a supramolecular isosceles triangle TTF-Δ, which tiles in a plane alongside the NDI-Δ, producing a 3 + 3 honeycomb tiling pattern of the two different polygons. Solid-state spectroscopic investigations on CT-C revealed the existence of an absorption band at 2500 nm, which on the basis of TDDFT calculations, was attributed to the mixed-valence character between two TTF•+ radical cations and one neutral TTF molecule.

12.
J Am Chem Soc ; 141(3): 1290-1303, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30537816

RESUMEN

The development of rigid covalent chiroptical organic materials, with multiple, readily available redox states, which exhibit high photoluminescence, is of particular importance in relation to both organic electronics and photonics. The chemically stable, thermally robust, and redox-active perylene diimide (PDI) fluorophores have received ever-increasing attention owing to their excellent fluorescence quantum yields in solution. Planar PDI derivatives, however, generally suffer from aggregation-caused emission quenching in the solid state. Herein, we report on the design and synthesis of two chiral isosceles triangles, wherein one PDI fluorophore and two pyromellitic diimide (PMDI) or naphthalene diimide (NDI) units are arranged in a rigid cyclic triangular geometry. The optical, electronic, and magnetic properties of the rigid isosceles triangles are fully characterized by a combination of optical spectroscopies, X-ray diffraction (XRD), cyclic voltammetry, and computational modeling techniques. Single-crystal XRD analysis shows that both isosceles triangles form discrete, nearly cofacial PDI-PDI π-dimers in the solid state. While the triangles exhibit fluorescence quantum yields of almost unity in solution, the dimers in the solid state exhibit very weak-yet at least an order of magnitude higher-excimer fluorescence yield in comparison with the almost completely quenched fluorescence of a reference PDI. The triangle containing both NDI and PDI subunits shows superior intramolecular energy transfer from the lowest excited singlet state of the NDI to that of the PDI subunit. Cyclic voltammetry suggests that both isosceles triangles exhibit multiple, easily accessible, and reversible redox states. Applications beckon in arenas related to molecular optoelectronic devices.

13.
J Am Chem Soc ; 141(31): 12296-12304, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31256588

RESUMEN

Prompted by a knowledge of the photoprotective mechanism operating in photosystem supercomplexes and bacterial antenna complexes by pigment binding proteins, we have appealed to a boxlike synthetic receptor (ExBox·4Cl) that binds a photosensitizer, 5,15-diphenylporphyrin (DPP), to provide photoprotection by regulating light energy. The hydrophilic ExBox4+ renders DPP soluble in water and modulates the phototoxicity of DPP by trapping it in its cavity and releasing it when required. While trapping removes access to the DPP triplet state, a pH-dependent release of diprotonated DPP (DPPH22+) restores the triplet deactivation pathway, thereby activating its ability to generate reactive oxygen species. We have employed the ExBox4+-bound DPP complex (ExBox4+⊃DPP) for the safe delivery of DPP into the lysosomes of cancer cells, imaging the cells by utilizing the fluorescence of the released DPPH22+ and regulating photodynamic therapy to kill cancer cells with high efficiency.


Asunto(s)
Lisosomas/metabolismo , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformación Molecular , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/metabolismo , Porfirinas/química , Porfirinas/metabolismo , Porfirinas/farmacología
14.
J Am Chem Soc ; 141(44): 17472-17476, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31622089

RESUMEN

Artificial molecular machines (AMMs) built from mechanically interlocked molecules (MIMs) can use energy ratchets to control the unidirectional motion of their component parts. These energy ratchets are operated by the alteration of kinetic barriers and thermodynamic wells, which are, in turn, determined by the switching on and off of noncovalent interactions. Previously, we have developed artificial molecular pumps (AMPs) capable of pumping rings consecutively onto a collecting chain as part of a molecular dumbbell, leading to the formation of rotaxanes. Here, we report a molecular dual pump (MDP) consisting of two individual AMPs linked in a head-to-tail fashion, wherein a single ring is pumped, in a linear manner, on and off a dumbbell involving a [2]rotaxane intermediate by exploiting the redox properties of the two pumps. This MDP, defined by the finely tuned noncovalent interactions and fueled by either chemicals or electricity, utilizes an energy ratchet mechanism to capture a ring and subsequently release it back into solution. The unidirectional motion and the resulting controlled capture and release of the ring were followed by 1D and 2D 1H NMR spectroscopy and supported by control experiments. This molecular dual pump may be considered to be a forerunner of AMMs that are capable of pumping rings across a membrane in a way similar to how bacteriorhodopsin transports protons from one side of a membrane to the other under the influence of light. Such extensive multicomponent AMMs can lead potentially to molecular transporting platforms with positional and directional control of cargo uptake and release when, and only when, instructed.

15.
Angew Chem Int Ed Engl ; 58(39): 13778-13783, 2019 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-31338912

RESUMEN

Reported here is the synthesis, solid-state characterization, and redox properties of new triangular, threefold symmetric, viologen-containing macrocycles. Cyclotris(paraquat-p-phenylene) (CTPQT6+ ) and cyclotris(paraquat-p-1,4-dimethoxyphenylene) (MCTPQT6+ ) were prepared and their X-ray single-crystal (super)structures reveal intricate three-dimensional packing. MCTPQT6+ results in nanometer-sized channels, in contrast with its parent counterpart CTPQT6+ which crystallizes as a couple of polymorphs in the form of intercalated assemblies. In the solid state, MCTPQT3(.+) exhibits stacks between the 1,4-dimethoxyphenylene and bipyridinium radical cations, providing new opportunities for the manipulation and control of the recognition motif associated with viologen radical cations. These redox-active cyclophanes demonstrate that geometry-matching and weak intermolecular interactions are of paramount importance in dictating the formation of their intricate solid-state superstructures.

16.
J Proteome Res ; 17(5): 1923-1933, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29664642

RESUMEN

About 2% of the genome of human and other organisms codes for proteases. An important step toward deciphering the biological function of a protease and designing inhibitors is the profiling of protease specificity. In this work we present a novel, label-free, proteomics-based protease specificity profiling method that only requires simple sample preparation steps. It uses proteome-derived peptide libraries and enriches the cleaved sequences using strong cation exchange chromatography (SCX) material in a pipet tip. As a demonstration of the method's versatility, we successfully determined the specificity of GluC, caspase-3, chymotrypsin, MMP-1 and cathepsin G from several hundreds to almost 2000 cleavage events per protease. Interestingly, we also found a novel intrinsic preference of cathepsin G for Asn at the P1 subsite, which we confirmed using synthetic peptides. Overall, this method is straightforward and requires so far the lowest investment in material and equipment for protease specificity profiling. Therefore, we think it will be applicable in any biochemistry laboratory and promote an increased understanding of protease specificity.


Asunto(s)
Péptido Hidrolasas/metabolismo , Biblioteca de Péptidos , Proteómica/métodos , Animales , Humanos , Métodos , Fragmentos de Péptidos/análisis , Especificidad por Sustrato
17.
J Am Chem Soc ; 140(23): 7206-7212, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29771509

RESUMEN

The ideal fluorescent probe for live-cell imaging is bright and non-cytotoxic and can be delivered easily into the living cells in an efficient manner. The design of synthetic fluorophores having all three of these properties, however, has proved to be challenging. Here, we introduce a simple, yet effective, strategy based on well-established chemistry for designing a new class of fluorescent probes for live-cell imaging. A box-like hybrid cyclophane, namely ExTzBox·4X (6·4X, X = PF6-, Cl-), has been synthesized by connecting an extended viologen (ExBIPY) and a dipyridyl thiazolothiazole (TzBIPY) unit in an end-to-end fashion with two p-xylylene linkers. Photophysical studies show that 6·4Cl has a quantum yield ΦF = 1.00. Furthermore, unlike its ExBIPY2+ and TzBIPY2+ building units, 6·4Cl is non-cytotoxic to RAW 264.7 macrophages, even with a loading concentration as high as 100 µM, presumably on account of its rigid box-like structure which prevents its intercalation into DNA and may inhibit other interactions with it. After gaining an understanding of the toxicity profile of 6·4Cl, we employed it in live-cell imaging. Confocal microscopy has demonstrated that 64+ is taken up by the RAW 264.7 macrophages, allowing the cells to glow brightly with blue laser excitation, without any hint of photobleaching or disruption of normal cell behavior under the imaging conditions. By contrast, the acyclic reference compound Me2TzBIPY·2Cl (4·2Cl) shows very little fluorescence inside the cells, which is quenched completely under the same imaging conditions. In vitro cell investigations underscore the significance of using highly fluorescent box-like rigid cyclophanes for live-cell imaging.


Asunto(s)
Colorantes Fluorescentes/química , Compuestos Macrocíclicos/química , Compuestos de Piridinio/química , Tiazoles/química , Animales , Fluorescencia , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/efectos de la radiación , Colorantes Fluorescentes/toxicidad , Luz , Compuestos Macrocíclicos/síntesis química , Compuestos Macrocíclicos/efectos de la radiación , Compuestos Macrocíclicos/toxicidad , Ratones , Microscopía Confocal/métodos , Modelos Químicos , Compuestos de Piridinio/síntesis química , Compuestos de Piridinio/efectos de la radiación , Compuestos de Piridinio/toxicidad , Teoría Cuántica , Células RAW 264.7 , Tiazoles/síntesis química , Tiazoles/efectos de la radiación , Tiazoles/toxicidad
18.
Bioorg Med Chem Lett ; 28(8): 1423-1427, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29506958

RESUMEN

Rhomboid proteases form one of the most widespread intramembrane protease families. They have been implicated in variety of human diseases. The currently reported rhomboid inhibitors display some selectivity, but their construction involves multistep synthesis protocols. Here, we report benzoxazin-4-ones as novel inhibitors of rhomboid proteases with a covalent, but slow reversible inhibition mechanism. Benzoxazin-4-ones can be synthesized from anthranilic acid derivatives in a one-step synthesis, making them easily accessible. We demonstrate that an alkoxy substituent at the 2-position is crucial for potency and results in low micromolar inhibitors of rhomboid proteases. Hence, we expect that these compounds will allow rapid synthesis and optimization of inhibitors of rhomboids from different organisms.


Asunto(s)
Benzoxazinas/farmacología , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de la Membrana/antagonistas & inhibidores , Inhibidores de Serina Proteinasa/farmacología , Animales , Bacillus subtilis/enzimología , Benzoxazinas/síntesis química , Benzoxazinas/química , Bovinos , Quimotripsina/antagonistas & inhibidores , Endopeptidasas , Pruebas de Enzimas , Escherichia coli/enzimología , Estructura Molecular , Inhibidores de Serina Proteinasa/síntesis química , Inhibidores de Serina Proteinasa/química , Relación Estructura-Actividad , Tripsina/química , Inhibidores de Tripsina/síntesis química , Inhibidores de Tripsina/química , Inhibidores de Tripsina/farmacología , ortoaminobenzoatos/química
19.
Angew Chem Int Ed Engl ; 57(30): 9325-9329, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-29774639

RESUMEN

Artificial molecular machines can be operated using either physical or chemical inputs. Light-powered motors display clean and autonomous operations, whereas chemically driven machines generate waste products and are intermittent in their motions. Herein, we show that controlled changes in applied electrochemical potentials can drive the operation of artificial molecular pumps in a semi-autonomous manner-that is, without the need for consecutive additions of chemical fuel(s). The electroanalytical approach described in this Communication promotes the assembly of cyclobis(paraquat-p-phenylene) rings along a positively charged oligomeric chain, providing easy access to the formation of multiple mechanical bonds by means of a controlled supply of electricity.

20.
Biochemistry ; 56(51): 6713-6725, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29185711

RESUMEN

Rhomboids are intramembrane serine proteases and belong to the group of structurally and biochemically most comprehensively characterized membrane proteins. They are highly conserved and ubiquitously distributed in all kingdoms of life and function in a wide range of biological processes, including epidermal growth factor signaling, mitochondrial dynamics, and apoptosis. Importantly, rhomboids have been associated with multiple diseases, including Parkinson's disease, type 2 diabetes, and malaria. However, despite a thorough understanding of many structural and functional aspects of rhomboids, potent and selective inhibitors of these intramembrane proteases are still not available. In this study, we describe the computer-based rational design, chemical synthesis, and biological evaluation of novel N-methylene saccharin-based rhomboid protease inhibitors. Saccharin inhibitors displayed inhibitory potency in the submicromolar range, effectiveness against rhomboids both in vitro and in live Escherichia coli cells, and substantially improved selectivity against human serine hydrolases compared to those of previously known rhomboid inhibitors. Consequently, N-methylene saccharins are promising new templates for the development of rhomboid inhibitors, providing novel tools for probing rhomboid functions in physiology and disease.


Asunto(s)
Diseño de Fármacos , Sacarina/análogos & derivados , Serina Proteasas/metabolismo , Inhibidores de Serina Proteinasa/farmacología , Diseño Asistido por Computadora , Células HEK293 , Humanos , Proteínas de la Membrana , Sacarina/farmacología , Inhibidores de Serina Proteinasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA