Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Bioconjug Chem ; 31(8): 1938-1947, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32644779

RESUMEN

3D bioprinting is one of the latest trends in regenerative medicine due to its capacity for constructing highly organized tissues with living cells. In this work, silk fibroin (SF) together with hydroxypropyl methyl cellulose (HPMC) was used to print bone marrow mesenchymal stem cell (BMSC)-laden double network (DN) hydrogel for cartilage tissue repair. The ß-sheet structure formed among SF molecules was set as the rigid and brittle first network, while the cross-linking of HPMC-MA was set as the soft and ductile second network. Compared to the single network hydrogel, the fracture strength, breaking elongation, and compressive reproducibility increased significantly. Thereafter, the evaluation of cell proliferation and biochemical assay of this BMSC-laden 3D bioprinted hydrogel proved that it could ensure sufficient nutrient supply and great biochemical supportability in tissue engineering. This SF-based bioink with remarkable mechanical properties holds great promise as candidate for cartilage tissue regeneration.


Asunto(s)
Bioimpresión/métodos , Fibroínas/química , Células Madre Mesenquimatosas/fisiología , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido , Cartílago , Proliferación Celular , Regulación de la Expresión Génica , Humanos , Lactosa/análogos & derivados , Metilcelulosa/análogos & derivados , Microscopía Electrónica de Rastreo , Medicina Regenerativa
2.
Bioorg Med Chem Lett ; 30(1): 126662, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31784322

RESUMEN

Starting from easy accessible pyrazoletetrahydropyran acetals, a series of new pyrazolone spirocyclohexadienone derivatives were synthesized and assayed for antitumor activity. Compound 10s was identified to possess good antitumor activity. It could induce MDA-MB-231 cancer cell apoptosis in a concentration dependent manner and arrest the cell cycle progression mainly at the G1 phase.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Pirazolonas/uso terapéutico , Antineoplásicos/farmacología , Humanos , Estructura Molecular , Pirazolonas/farmacología , Relación Estructura-Actividad
3.
Int J Oncol ; 59(1)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34036380

RESUMEN

Mounting evidence has demonstrated that microRNAs (miRNAs or miRs) play significant roles in various types of human tumors, including retinoblastoma (RB). However, the biological role and regulatory mechanisms of miRNAs in RB remain to be fully elucidated. The present study was designed to identify the regulatory effects of miRNAs in RB and the underlying mechanisms. Differentially expressed miRNAs in RB tissue were screened out based on the Gene Expression Omnibus (GEO) dataset, GSE7072, which revealed that miR­153 in particular, displayed the highest fold change in expression. It was identified that miR­153 was significantly downregulated in RB tissues, and its downregulation was closely associated with a larger tumor base and differentiation. Functional analysis revealed that the overexpression of miR­153 inhibited RB cell proliferation, migration and invasion, and promoted the apoptosis of WERI­RB­1 and Y79 cells. In addition, insulin­like growth factor 1 receptor (IGF1R) was identified as a target of miR­153 in RB cells. More importantly, it was demonstrated that miR­153 upregulation inhibited the expression of its target gene, IGF1R, which inhibited the activation of the Raf/MEK and PI3K/AKT signaling pathways. Collectively, the present study demonstrates for the first time, to the best of our knowledge, that miR­153 functions as a tumor suppressor in RB by targeting the IGF1R/Raf/MEK and IGF1R/PI3K/AKT signaling pathways. Collectively, the findings presented herein demonstrate that miR­153 targets IGF1R and blocks the activation of the Raf/MEK and PI3K/AKT signaling pathway, thus preventing the progression of RB. Thus, this miRNA may serve as a novel prognostic biomarker and therapeutic target for RB.


Asunto(s)
Regulación hacia Abajo , MicroARNs/genética , Receptor IGF Tipo 1/genética , Neoplasias de la Retina/patología , Retinoblastoma/patología , Ciclo Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Invasividad Neoplásica , Estadificación de Neoplasias , Receptor IGF Tipo 1/metabolismo , Neoplasias de la Retina/genética , Neoplasias de la Retina/metabolismo , Retinoblastoma/genética , Retinoblastoma/metabolismo , Transducción de Señal
4.
ACS Appl Bio Mater ; 4(1): 406-419, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35014292

RESUMEN

The success of complex tissue and internal organ reconstruction relies principally on the fabrication of a 3D vascular network, which guarantees the delivery of oxygen and nutrients in addition to the disposal of waste. In this study, a rapidly forming cell-encapsulated double network (DN) hydrogel is constructed by an ultrasonically activated silk fibroin network and bioorthogonal-mediated polyethylene glycol network. This DN hydrogel can be solidified within 10 s, and its mechanical property gradually increases to ∼20 kPa after 30 min. This work also demonstrates that coencapsulation of human umbilical vein endothelial cells (HUVECs) and umbilical cord-derived mesenchymal stem cells (UCMSCs) into the DN hydrogel can facilitate the formation of more mature vessels and complete the capillary network in comparison with the hydrogels encapsulated with a single cell type both in vitro and in vivo. Taking together, the DN hydrogel, combined with coencapsulation of HUVECs and UCMSCs, represents a strategy for the construction of a functional vascular network.


Asunto(s)
Fibroínas/química , Hidrogeles/química , Polietilenglicoles/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Técnicas de Cocultivo , Módulo de Elasticidad , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Cordón Umbilical/citología
5.
J Mater Chem B ; 8(19): 4237-4244, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32270838

RESUMEN

Articular cartilage has limited self-healing ability due to its lack of abundant nutrients and progenitor cells. In this study, an injectable hydrogel system consisting of collagen type I-tyramine (Col-TA) and hyaluronic acid-tyramine (HA-TA) was fabricated as the bone marrow mesenchymal stem cell (BMSC)-laden hydrogel system for cartilage regeneration. Next, the physiochemical properties of this hydrogel system were well characterized and optimized, including gelation time, stiffness, water absorption and degradability. Further, the proliferation and differentiation of BMSCs within the Col-HA hydrogel were evaluated, and the ability of in vivo cartilage repair was also examined in the presence of the transforming growth factor-ß1 (TGF-ß1). These results illustrate that this hydrogel can offer a great microenvironment for BMSC growth and cartilage differentiation both in vitro and in vivo, and the Col-HA hydrogel can serve as an ideal hydrogel for cartilage tissue regeneration.


Asunto(s)
Cartílago Articular/efectos de los fármacos , Colágeno Tipo I/farmacología , Reactivos de Enlaces Cruzados/farmacología , Peroxidasa de Rábano Silvestre/metabolismo , Ácido Hialurónico/farmacología , Hidrogeles/farmacología , Animales , Biocatálisis , Cartílago Articular/metabolismo , Diferenciación Celular/efectos de los fármacos , Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/metabolismo , Peroxidasa de Rábano Silvestre/química , Ácido Hialurónico/química , Ácido Hialurónico/metabolismo , Hidrogeles/química , Hidrogeles/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Estructura Molecular , Tamaño de la Partícula , Ratas , Propiedades de Superficie , Tiramina/química , Tiramina/metabolismo , Tiramina/farmacología
6.
J Mater Chem B ; 8(27): 5845-5848, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32667029

RESUMEN

An injectable BMSC-encapsulated double network (DN) hydrogel was fabricated via silk fibroin (SF) and poly(ethylene glycol) (PEG), which could efficiently support the survival and proliferation of BMSCs in vitro as well as cartilage repair in vivo, and provides a new strategy for cartilage tissue engineering.


Asunto(s)
Materiales Biocompatibles/química , Cartílago/metabolismo , Fibroínas/química , Hidrogeles/química , Polietilenglicoles/química , Andamios del Tejido/química , Animales , Condrogénesis , Humanos , Ratas , Ratas Sprague-Dawley
7.
ACS Appl Bio Mater ; 2(6): 2444-2452, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35030701

RESUMEN

Liver tissue engineering is going to be an effective treatment for end-stage liver disease. In this work, we distributed bone marrow mesenchymal stem cells (BMSCs) into a fast-forming hydrogel system to develop a liver-mimicking construct for liver regeneration. The advantage of this hydrogel system was that this BMSC-encapsulating hydrogel could be formed via a bioorthogonal reaction between 2-cyanobenzothiazole and cysteine within several seconds. Thereafter, we explored the morphology, biocompatibility, and expressions of hepatic differentiation markers of this hydrogel system. These results illustrated that this system could provide a suitable niche for BMSC proliferation and differentiation, which could aid in future biomedical research of liver regeneration.

8.
Colloids Surf B Biointerfaces ; 174: 528-535, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30500741

RESUMEN

Many patients suffer from bone injury and self-regeneration is not effective. Developing new strategies for effective bone injury repair is highly desired. Herein, collagen, an important component of the extracellular matrix, was modified with glycidyl methacrylate. The water solubility and photochemical cross-linking ability of the resulting collagen derivative was then improved. Thereafter, BMSC-laden hydrogel was fabricated using collagen modified with glycidyl methacrylate and hyaluronic acid modified with methacrylic anhydride under UV light in the presence of I 2959. The physicochemical properties were characterized suggesting that the hydrogel had great potential for enhancing cell adhesion and proliferation. Furthermore, without adding the bone morphogenetic protein-2, the collagen also promoted osteogenic differentiation of BMSCs within the hydrogel. Altogether, this hydrogel system provides a general strategy to fabricate cell-encapsulating hydrogel based on collagen and could be used as 3D scaffold for bone injury repair.


Asunto(s)
Médula Ósea , Diferenciación Celular , Colágeno/química , Reactivos de Enlaces Cruzados/química , Hidrogeles/química , Células Madre Mesenquimatosas/citología , Osteogénesis , Proteína Morfogenética Ósea 2/metabolismo , Regeneración Ósea , Adhesión Celular , Proliferación Celular , Células Cultivadas , Humanos , Luz , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de la radiación , Ingeniería de Tejidos , Andamios del Tejido
9.
Mater Sci Eng C Mater Biol Appl ; 96: 841-849, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30606598

RESUMEN

Bone-marrow-derived mesenchymal stem cells possess great potential for tissue engineering and regenerative medicine. In the work, an injectable BMSCs-laden hydrogel system was formed by enzyme-catalyzed crosslinking of hyaluronic acid-tyramine and chondroitin sulfate-tyramine in the presence of hydrogen peroxide and horseradish peroxidase, which was used as a 3D scaffold to explore the behavior of the mesenchymal stem cells. Afterward, the gelation rate, mechanical properties, as well as the degradation process of the scaffold were well characterized and optimized. Furthermore, bone morphogenetic protein-2 was encapsulated in the scaffold, which was used to improve the osteogenic properties. The results illustrated that such a BMSCs-laden hydrogel not only offered a proper microenvironment for the adhesion, proliferation and differentiation of mesenchymal stem cells in vitro, but also promoted bone regeneration in vivo. Therefore, this injectable BMSCs-laden hydrogel may serve as an efficient 3D scaffold for bone repair and regeneration.


Asunto(s)
Células de la Médula Ósea/metabolismo , Regeneración Ósea , Células Inmovilizadas , Hidrogeles , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Nicho de Células Madre , Andamios del Tejido , Animales , Células Inmovilizadas/metabolismo , Células Inmovilizadas/trasplante , Hidrogeles/química , Hidrogeles/farmacología , Ratas , Ratas Sprague-Dawley
10.
ACS Appl Bio Mater ; 1(5): 1408-1415, 2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34996245

RESUMEN

Gellan gum hydrogel holds great potential in tissue engineering, but the high phase transition temperature greatly inhibits the applications in biomedical field. In this study, gellan gum was modified with methacrylic anhydride, and then the phase transition temperature was reduced. The functionalized gellan gum together with type I collagen was gelled by ion/photo dual-cross-linking for fabricating bone marrow-derived mesenchymal stem cells (BMSCs)-encapsulating hydrogel for vascularization. After the ratio between gellan gum and collagen was optimized, the hydrogel with proper pore size and mechanical properties was prepared. The WST assay demonstrated that the hydrogel could offer excellent microenvironment for cell survival and proliferation. Finally, real-time quantitative polymerase chain reaction suggests that the hydrogel could promote BMSCs to differentiate into endothelial cells. Together, this work provides a general strategy for fabricating BMSCs-encapsulating hydrogel in one step, which has the potential for 3D-printing live cell scaffold for study of vasculogenic differentiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA