RESUMEN
BACKGROUND: The first large serosurvey in Iran found a SARS-CoV-2 antibody seroprevalence of 17.1% among the general population in the first wave of the epidemic by April, 2020. The purpose of the current study was to assess the seroprevalence of COVID-19 infection among Iranian general population after the third wave of the disease. METHODS: This population-based cross-sectional study was conducted on 7411 individuals aged ≥10 years old in 16 cities across 15 provinces in Iran between January and March, 2021. We randomly sampled individuals registered in the Iranian electronic health record system based on their national identification numbers and invited them by telephone to a healthcare center for data collection. Presence of SARS-CoV-2-specific IgG and IgM antibodies was assessed using the SARS-CoV-2 ELISA kits. The participants were also asked about their recent COVID-19-related symptoms, including cough, fever, chills, sore throat, headache, dyspnea, diarrhea, anosmia, conjunctivitis, weakness, myalgia, arthralgia, altered level of consciousness, and chest pain. The seroprevalence was estimated after adjustment for population weighting and test performance. RESULTS: The overall population-weighted seroprevalence adjusted for test performance was 34.2% (95% CI 31.0-37.3), with an estimated 7,667,874 (95% CI 6,950,412-8,362,915) infected individuals from the 16 cities. The seroprevalence varied between the cities, from the highest estimate in Tabriz (39.2% [95% CI 33.0-45.5]) to the lowest estimate in Kerman (16.0% [95% CI 10.7-21.4]). In the 16 cities studied, 50.9% of the seropositive individuals did not report a history of symptoms suggestive of COVID-19, implying an estimation of 3,902,948 (95% CI 3,537,760-4,256,724) asymptomatic infected individuals. CONCLUSIONS: Nearly one in three individuals were exposed to SARS-CoV-2 in the studied cities by March 2021. The seroprevalence increased about two-fold between April, 2020, and March, 2021.
Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , COVID-19/epidemiología , Niño , Estudios Transversales , Humanos , Inmunoglobulina G , Irán/epidemiología , Estudios SeroepidemiológicosRESUMEN
Genome insertions and deletions (indels) show tremendous functional impacts despite they are much less common than single nucleotide variants, which are at the center of studies assessing cancer mutational signatures. We studied 8891 tumor samples of 32 types from The Cancer Genome Atlas in order to explore those genes which are potentially implicated in cancer indels. Survival analysis identified in-frame indels as the most important variants predicting adverse outcome. Transcriptome-wide association study identified 16 genes overexpressed in both tumor samples and tumor types with high number of in-frame indels, of whom four (APOBEC1, BCL2L15, FOXL1 and PDX1) were identified with gene products distributed within the nucleus. APOBEC1 emerged as the mere consistently hypomethylated gene in tumor samples with high number of in-frame indels. The correlation of APOBEC1 expression levels with cancer indels was independent of age and defects in DNA homologous recombination (HR) and/or mismatch repair. Unlike frame-shift indels, triplet repeat motifs were found to occur frequently at in-frame indel sites. The splicing variant 3, making a shorter isoform b, showed essentially all the same indel correlations as of APOBEC1. Expression levels of both APOBEC1 and variant 3 were found to be predicting adverse prognosis independent of DNA HR and mismatch repair. Not less importantly, high level of variant 3 in paired normal tissues was also proved to predict cancer outcome. Our findings propose APOBEC1 and isoform b as the potential endogenous mutators implicated in cancer in-frame indels and pave the way for their use as novel prognostic tumor markers.
Asunto(s)
Desaminasas APOBEC-1/genética , Mutación INDEL/genética , Neoplasias/genética , Humanos , Estimación de Kaplan-Meier , Neoplasias/mortalidad , Pronóstico , Modelos de Riesgos Proporcionales , TranscriptomaRESUMEN
Wilms Tumor-1 (WT1) expression level is implicated in the prognosis of acute myeloid leukaemia (AML). We hypothesized that a gene expression profile associated with WT1 expression levels might be a good surrogate marker. We identified high WT1 gene sets by comparing the gene expression profiles in the highest and lowest quartiles of WT1 expression in two large AML studies. Two high WT1 gene sets were found to be highly correlated in terms of the altered genes and expression profiles. We identified a 17-probe set signature of the high WT1 set as the optimal prognostic predictor in the first AML set, and showed that it was able to predict prognosis in the second AML series after adjustment for European LeukaemiaNet genetic groups. The gene signature also proved to be of prognostic value in a third AML series of 163 samples assessed by RNA sequencing, demonstrating its cross-platform consistency. This led us to derive a 4-gene expression score, which faithfully predicted adverse outcome. In conclusion, a short gene signature associated with high WT1 expression levels and the resultant 4-gene expression score were found to be predictive of adverse prognosis in AML. This study provides new clues to the molecular pathways underlying high WT1 states in leukaemia.
Asunto(s)
Biomarcadores de Tumor/sangre , Leucemia Mieloide Aguda/genética , Proteínas WT1/sangre , Adulto , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica/métodos , Genes del Tumor de Wilms , Marcadores Genéticos , Humanos , Estimación de Kaplan-Meier , Leucemia Mieloide Aguda/sangre , Leucemia Mieloide Aguda/diagnóstico , Persona de Mediana Edad , Pronóstico , Proteínas WT1/genéticaRESUMEN
The single-nucleotide polymorphism (SNP) within Wilms tumor-1 (WT1) exon 7, rs16754, has been arguably reported to be implicated in acute myeloid leukemia (AML) prognosis. We assessed the potential association of selected WT1 SNPs as well as WT1 mutations in normal karyotype (NK)-AML and evaluated the prognostic value of these normal gene variants. Diagnostic samples from a series of 474 young adult NK-AML patients were used to genotype five WT1 SNPs using TaqMan assays and to directly sequence WT1 exons 7 and 9. Analysis of five WT1 gene variants showed an association of rs2234593 allele C with WT1 Ex7 mutation. Prognostic study of the same variants identified rs2234593 significantly associated with relapse and overall survival (OS). Patients with rs2234593AA/AC showed significantly higher 10-year OS (50 vs 36 %, hazard ratio (HR) = 0.69 (0.520.90), p = 0.006) and lower cumulative incidence of relapse (CIR) (36 vs 51 %, HR = 0.62 (0.450.86), p = 0.004) compared to those with rs2234593CC. The effect of AA genotype on CIR remained significant after adjustment for basic covariates including FLT3 internal-tandem duplication (FLT3-ITD) and nucleophosmin 1 (NPM1) mutations (HR = 0.60 (0.410.89), p = 0.009), with some evidence of improved survival (HR = 0.75 (0.551.03), p = 0.07). A multivariate analysis showed WT1 Ex7-mutant as the major relapse predictor, with a tendency for rs2234593-A effect after allowing for Ex7 mutation (p = 0.07). No adjusted risk benefit was found for previously reported rs16754-G. In conclusion, WT1 normal gene variant rs2234593 is associated with mutational status of WT1 Ex7 and is a further prognostic marker independent from FLT3-ITD and NPM1 mutations in NK-AML.
Asunto(s)
Biomarcadores de Tumor/genética , Variación Genética/genética , Cariotipo , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Proteínas WT1/genética , Adulto , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nucleofosmina , Polimorfismo de Nucleótido Simple/genética , Pronóstico , Adulto JovenRESUMEN
The APOBEC/AID family is known for its mutator activity, and recent evidence also supports the potential impact of ADARs. Furthermore, the mutator impacts of APOBEC/ADAR mutations have not yet been investigated. Assessment of pancancer TCGA exomes identified enriched somatic variants among exomes with nonsynonymous APOBEC1, APOBEC3B, APOBEC3C, ADAR, and ADARB1 mutations, compared to exomes with synonymous ones. Principal component (PC) analysis reduced the number of potential players to eight in cancer exomes/genomes, and to five in cancer types. Multivariate regression analysis was used to assess the impact of the PCs on each COSMIC mutational signature among pancancer exomes/genomes and particular cancers, identifying several novel links, including SBS17b, SBS18, and ID7 mainly determined by APOBEC1 mRNA levels; SBS40, ID1, and ID2 by age; SBS3 and SBS16 by APOBEC3A/APOBEC3B mRNA levels; ID5 and DBS9 by DNA repair/replication (DRR) defects; and SBS7a-d, SBS38, ID4, ID8, ID13, and DBS1 by ultraviolet (UV) radiation/ADARB1 mRNA levels. APOBEC/ADAR mutations appeared to potentiate the impact of DRR defects on several mutational signatures, and some factors seemed to inversely affect certain signatures. These findings potentially implicate certain APOBEC/ADAR mutations/mRNA levels in distinct mutational signatures, particularly APOBEC1 mRNA levels in aging-related signatures and ADARB1 mRNA levels in UV radiation-related signatures.
Asunto(s)
Adenosina Desaminasa , Envejecimiento , Mutación , ARN Mensajero , Proteínas de Unión al ARN , Rayos Ultravioleta , Humanos , Rayos Ultravioleta/efectos adversos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Envejecimiento/genética , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Desaminasas APOBEC-1/genética , Desaminasas APOBEC-1/metabolismo , Desaminasas APOBEC/genética , Desaminasas APOBEC/metabolismo , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Neoplasias/genética , ExomaRESUMEN
The rapid emergence of COVID-19 pandemics has posed humans particularly vulnerable to the novel SARS-CoV-2 virus. Since de novo drug discovery is both expensive and time-consuming, drug repurposing approaches are believed to be of particular help. The SARS-CoV-2 spike (S) protein is known to attach human angiotensin-converting enzyme-2 (hACE2) through its receptor-binding domain (RBD). We screened 1930 FDA-approved ligands for the selection of optimal ones blocking this interaction. Virtual screening predicted top 25 ligands docking to any of the reported binding sites. After exclusion of those ligands which were unsuitable for systemic use, the remaining 69 RBD-ligand complexes were screened based on the masking capacity of the amino acid residues engaged in RBD-hACE2 interaction, excluding 47 RBD-ligand complexes. A short molecular dynamics (MD) simulation analysis identified 11 globally stable complexes with the lowest RMSD (root-mean-square deviation). Next, a moderately long MD analysis revealed those six RBD-ligand complexes with the lowest RMSD variation, as a measure of global stability. Finally, a long MD analysis revealed two select candidate ligands, including ritonavir and naloxegol, highly stabilizing those key residues engaged in RBD-hACE2 interaction. A similar MD analysis of a few antiviral drugs which are under clinical trials or approved for COVID-19 treatment showed them inferior to both select ligands in terms of stabilizing the RBD globally and locally at binding sites. Because of the crucial role of the S protein in virus virulence, our results highly propose ritonavir and naloxegol as the potentially helpful therapeutics against COVID-19, mandating appropriate clinical trials.Communicated by Ramaswamy H. Sarma.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , Simulación de Dinámica Molecular , Humanos , Morfinanos , Polietilenglicoles , Unión Proteica , Ritonavir/farmacología , SARS-CoV-2 , Glicoproteína de la Espiga del CoronavirusRESUMEN
The factors affecting the dynamics of lengthening of symptoms and serologic responses are not well known. In order to see how the serologic responses change in relation to the clinical features, we selected a group of 472 adults with a positive IgM/IgG antibody test result from a baseline study of the anti-SARS-CoV-2 seropositivity, assessed their COVID-19 and past medical histories, and followed them up in about 3 months. Nearly one-fourth of the subjects were asymptomatic at the baseline; 12.8% subjects became symptomatic at the follow-up (FU) when 39.8% of the subjects had some persisting symptoms. At the baseline, 6.1% showed anti-SARS-CoV-2 IgM positive, 59.3% only for IgG, and 34.5% for both. At the FU, these figures declined to 0.6, 54.0, and 4.4%, respectively, with the mean IgM and IgG levels declining about 6.3 and 2.5 folds. Blood group A was consistently linked to both sustaining and flipping of the gastrointestinal (GI) and respiratory symptoms. The baseline IgM level was associated with GI symptoms and pre-existing cirrhosis in multivariate models. Both of the baseline and FU IgG levels were strongly associated with age, male, and lung involvement seen in chest computed tomography (CT)-scan. Finally, as compared with antibody decayers, IgM sustainers were found to be more anosmic [mean difference (MD): 11.5%; P = 0.047] with lower body mass index (BMI) (MD: 1.30 kg/m2; P = 0.002), while IgG sustainers were more commonly females (MD: 19.2%; P = 0.042) with shorter diarrhea duration in the FU (MD: 2.8 days; P = 0.027). Our findings indicate how the anti-SARS-CoV-2 serologic response and COVID-19 clinical presentations change in relation to each other and basic characteristics.
RESUMEN
Esophageal squamous cell carcinoma (ESCC) shows remarkable variation in incidence that is not fully explained by known lifestyle and environmental risk factors. It has been speculated that an unknown exogenous exposure(s) could be responsible. Here we combine the fields of mutational signature analysis with cancer epidemiology to study 552 ESCC genomes from eight countries with varying incidence rates. Mutational profiles were similar across all countries studied. Associations between specific mutational signatures and ESCC risk factors were identified for tobacco, alcohol, opium and germline variants, with modest impacts on mutation burden. We find no evidence of a mutational signature indicative of an exogenous exposure capable of explaining differences in ESCC incidence. Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like (APOBEC)-associated mutational signatures single-base substitution (SBS)2 and SBS13 were present in 88% and 91% of cases, respectively, and accounted for 25% of the mutation burden on average, indicating that APOBEC activation is a crucial step in ESCC tumor development.
Asunto(s)
Neoplasias Esofágicas/epidemiología , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/epidemiología , Carcinoma de Células Escamosas de Esófago/genética , Mutación , Desaminasas APOBEC/genética , Adulto , Anciano , Anciano de 80 o más Años , Aldehído Deshidrogenasa Mitocondrial/genética , Brasil/epidemiología , China/epidemiología , Femenino , Humanos , Incidencia , Irán/epidemiología , Masculino , Persona de Mediana Edad , Proteína p53 Supresora de Tumor/genética , Reino Unido/epidemiología , Secuenciación Completa del GenomaRESUMEN
BACKGROUND: Rapid increases in cases of COVID-19 were observed in multiple cities in Iran towards the start of the pandemic. However, the true infection rate remains unknown. We aimed to assess the seroprevalence of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 18 cities of Iran as an indicator of the infection rate. METHODS: In this population-based cross-sectional study, we randomly selected and invited study participants from the general population (from lists of people registered with the Iranian electronic health record system or health-care centres) and a high-risk population of individuals likely to have close social contact with SARS-CoV-2-infected individuals through their occupation (from employee lists provided by relevant agencies or companies, such as supermarket chains) across 18 cities in 17 Iranian provinces. Participants were asked questions on their demographic characteristics, medical history, recent COVID-19-related symptoms, and COVID-19-related exposures. Iran Food and Drug Administration-approved Pishtaz Teb SARS-CoV-2 ELISA kits were used to detect SARS-CoV-2-specific IgG and IgM antibodies in blood samples from participants. Seroprevalence was estimated on the basis of ELISA test results and adjusted for population weighting (by age, sex, and city population size) and test performance (according to our independent validation of sensitivity and specificity). FINDINGS: From 9181 individuals who were initially contacted between April 17 and June 2, 2020, 243 individuals refused to provide blood samples and 36 did not provide demographic information and were excluded from the analysis. Among the 8902 individuals included in the analysis, 5372 had occupations with a high risk of exposure to SARS-CoV-2 and 3530 were recruited from the general population. The overall population weight-adjusted and test performance-adjusted prevalence of antibody seropositivity in the general population was 17·1% (95% CI 14·6-19·5), implying that 4â265â542 (95% CI 3â659â043-4â887â078) individuals from the 18 cities included were infected by the end of April, 2020. The adjusted seroprevalence of SARS-CoV-2-specific antibodies varied greatly by city, with the highest estimates found in Rasht (72·6% [53·9-92·8]) and Qom (58·5% [37·2-83·9]). The overall population weight-adjusted and test performance-adjusted seroprevalence in the high-risk population was 20·0% (18·5-21·7) and showed little variation between the occupations included. INTERPRETATIONS: Seroprevalence is likely to be much higher than the reported prevalence of COVID-19 based on confirmed COVID-19 cases in Iran. Despite high seroprevalence in a few cities, a large proportion of the population is still uninfected. The potential shortcomings of current public health policies should therefore be identified to prevent future epidemic waves in Iran. FUNDING: Iranian Ministry of Health and Medical Education. TRANSLATION: For the Farsi translation of the abstract see Supplementary Materials section.
Asunto(s)
COVID-19/epidemiología , SARS-CoV-2/aislamiento & purificación , Adulto , Anticuerpos Antivirales/sangre , COVID-19/diagnóstico , COVID-19/inmunología , Prueba de COVID-19 , Ciudades/estadística & datos numéricos , Estudios Transversales , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Irán/epidemiología , Masculino , Persona de Mediana Edad , Pandemias , Prevalencia , SARS-CoV-2/inmunología , Sensibilidad y Especificidad , Estudios Seroepidemiológicos , Adulto JovenRESUMEN
Classic deamination mRNA changes, including cytidine to uridine (C-to-U) and adenosine to inosine (A-to-I), are important exceptions to the central dogma and lead to significant alterations in gene transcripts and products. Although there are a few reports of non-classic mRNA alterations, as yet there is no molecular explanation for these alternative changes. Wilms Tumor 1 (WT1) mutations and variants are implicated in several diseases, including Wilms tumor and acute myeloid leukemia (AML). We observed two alternative G-to-A changes, namely c.1303G>A and c.1586G>A in cDNA clones and found them to be recurrent in a series of 21 umbilical cord blood mononuclear cell (CBMC) samples studied. Two less conserved U-to-C changes were also observed. These alternative changes were found to be significantly higher in non-progenitor as compared to progenitor CBMCs, while they were found to be absent in a series of AML samples studied, indicating they are targeted, cell type-specific mRNA editing modifications. Since APOBEC/ADAR family members are implicated in RNA/DNA editing, we screened them by RNA-interference (RNAi) for WT1-mRNA changes and observed near complete reversal of WT1 c.1303G>A alteration upon APOBEC3A (A3A) knockdown. The role of A3A in mediating this change was confirmed by A3A overexpression in Fujioka cells, which led to a significant increase in WT1 c.1303G>A mRNA editing. Non-progenitor CBMCs showed correspondingly higher levels of A3A-mRNA and protein as compared to the progenitor ones. To our knowledge, this is the first report of mRNA modifying activity for an APOBEC3 protein and implicates A3A in a novel G-to-A form of editing. These findings open the way to further investigations into the mechanisms of other potential mRNA changes, which will help to redefine the RNA editing paradigm in both health and disease.
Asunto(s)
Citidina Desaminasa/genética , Proteínas/genética , Edición de ARN , ARN Mensajero/metabolismo , Proteínas WT1/genética , Adenosina/metabolismo , Secuencia de Bases , Citidina Desaminasa/antagonistas & inhibidores , Citidina Desaminasa/metabolismo , Guanina/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Datos de Secuencia Molecular , Mutación , Proteínas/antagonistas & inhibidores , Proteínas/metabolismo , Interferencia de ARN , ARN Mensajero/química , ARN Interferente Pequeño/metabolismo , Análisis de Secuencia de ADN , Cordón Umbilical/citología , Proteínas WT1/metabolismo , Tumor de Wilms/genética , Tumor de Wilms/patologíaRESUMEN
Expression of foreign proteins in mammalian milk is becoming a widespread strategy for high-level production of recombinant pharmaceuticals, especially those with the most complex post-translational modifications. A milk-specific ovine beta-lactoglobulin (oBLG) promoter was used to drive expression of recombinant calcitonin in mouse milk. A gene construct was generated, consisting of 10.7 kbp of the oBLG gene including its promoter and 3' flanking region with the calcitonin coding sequences inserted in-frame into the oBLG fifth exon. After microinjection, six founder mice transmitted the transgene to their progeny. RT-PCR confirmed mammary-gland specific expression of recombinant mRNA in most transgenic mice and Western blot analysis confirmed expression of chimeric protein. Calcitonin can thus be expressed under the oBLG promoter and regulatory elements in a mammary-gland specific manner.