Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Pollut ; 360: 124631, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39074686

RESUMEN

The widespread presence of Microplastics (MPs) is increasing in the indoor environment due to increasing annual plastic usage, which is becoming a global threat to human health. Therefore, this is the first research in Bangladesh to identify, and characterize, MP pollution and its allied threats to human health in the indoor urban environment, where 80 household dust samples were collected from the whole study area. The presence of MPs in household dust of the urban indoor environment was 25.8 ± 6.43 particles/g with a significant variety, whereas the fiber shape (73%), 0.5-1.00 mm ranged MPs size (58%), blue color (21%), and polystyrene polymer (34%) was the most ubiquitous MPs category. The pollution load index (1.61-2.96) indicated significant pollution due to the high abundance of MPs. Besides, other risks evaluating indices including contamination factor (1.00-3.51), and Nemerow pollution index (1.60-3.51) represent moderate to high MP-induced pollution. The polymer hazard index (119.54 ± 70.34) indicated significant risks for the selected polymers to the indoor environment living inhabitants. Machine learning approaches, especially random forest and support random vector machine were effective in predicting the number of MPs, where EC, salinity, pH, OC, and texture classes acted as controlling factors. Children and adults might be ingesting 4.12 ± 1.01 and 2.27 ± 0.57 particles/day through the ingestion exposure route, which has significant health effects. Polymer-associated lifetime cancer risk assessment results show that there are moderate risks for both adults and children, but children tend to be more susceptible to MP risks. The overall study found that Dhaka was the most severely MPs induced risky division among the others. This study reveals that high quantities of MPs in indoor environments could pose a serious health hazard' to different exposure groups.


Asunto(s)
Contaminación del Aire Interior , Monitoreo del Ambiente , Aprendizaje Automático , Microplásticos , Bangladesh , Microplásticos/análisis , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Humanos , Medición de Riesgo , Polvo/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Contaminantes Atmosféricos/análisis
2.
J Hazard Mater ; 477: 135374, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39084010

RESUMEN

Microplastics (MPs) are polymer-based particles commonly found in diverse foods that pose serious human health impacts throughout the food chain. Assessment of MPs in different food products is a prime measure to combat MP-related food contamination. Therefore, this study first investigated the identification, characterization, and potential risks of MPs in the commercially available milk brands (19 dry powders and 06 liquid brands) in Bangladesh. The presence of MPs in milk samples was 279.47 ± 134.26 particles/kg and 182.27 ± 55.13 particles/L for powder and liquid milk, respectively, with a significant variety. Study findings displayed miscellaneous colors, fiber shapes (powder=78 %; liquid=81 %), > 0.1 mm sizes (powder=69 %; liquid=65 %), and polyethylene (powder=48 %; liquid=44 %) dominating MPs categories. The pollution load index indicated significant pollution due to the high abundance of MPs. Further, other risk-evaluating indices including contamination factor and Nemerow pollution index represent moderate to high MP-induced pollution for both milk samples. Low to moderate polymeric risks are exhibited by powder and liquid milk samples. Children could be exposed to 3.43 times higher MPs than adults through daily oral ingestion, which has significant health effects. This study found that powder milk was the most severely MPs induced risk than liquid milk. Consequently, this study finding established a reference point for MP contamination in milk, so special attention must be taken during production, storage, and packaging stages to reduce MP contamination.


Asunto(s)
Contaminación de Alimentos , Microplásticos , Leche , Bangladesh , Leche/química , Animales , Humanos , Contaminación de Alimentos/análisis , Microplásticos/análisis , Medición de Riesgo
3.
J Hazard Mater ; 472: 134359, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38691990

RESUMEN

Microplastics (MPs) are an emerging global concern due to severe toxicological risks for ecosystems and public health. Therefore, this is the first study in Bangladesh to assess MP pollution and its associated risks for ecosystems and human health in the outdoor urban environment using machine learning and multivariate approaches. The occurrences of MPs in the urban road dust were 52.76 ± 20.24 particles/g with high diversity, where fiber shape (77%), 0.1-0.5 mm size MPs (75%), blue color (26%), and low-density polyethylene (24%) polymer was the dominating MPs category. Pollution load index value (1.28-4.42), showed severe pollution by MPs. Additionally, the contamination factor (1.00-5.02), and Nemerow pollution index (1.38-5.02), indicate moderate to severe MP pollution. The identified polymers based on calculated potential ecological risk (2248.52 ± 1792.79) and polymer hazard index (814.04 ± 346.15) showed very high and high risks, respectively. The occurrences of MPs could effectively be predicted by random forest, and support random vector machine, where EC, salinity, pH, OC, and texture classes were the influencing parameters. Considering the human health aspect, children and adults could be acutely exposed to 19259.68 and 5777.90 MP particles/ year via oral ingestion. Monte-Carlo-based polymers associated cancer risk assessment results indicate moderate risk and high risk for adults and children, respectively, where children were more vulnerable than adults for MP pollution risks. Overall assessment mentioned that Dhaka was the most polluted division among the other divisions.


Asunto(s)
Monitoreo del Ambiente , Aprendizaje Automático , Microplásticos , Bangladesh , Microplásticos/análisis , Microplásticos/toxicidad , Medición de Riesgo , Monitoreo del Ambiente/métodos , Humanos , Contaminación Ambiental/análisis , Ciudades , Análisis Multivariante , Polvo/análisis
4.
PLoS One ; 18(8): e0290471, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37611009

RESUMEN

This study focuses on the probable use of PET waste black carbon (PETWBC) and rice straw black carbon (RSBC) as an adsorbent for Acid Red 27 (AR 27) adsorption. The prepared adsorbent is characterized by FE-SEM and FT-IR. Batch adsorption experiments were conducted with the influencing of different operational conditions namely time of contact (1-180 min), AR 27 concentration (5-70 mg/L), adsorbent dose (0.5-20 g/L), pH (2-10), and temperature (25-60°C). High coefficient value [PETWBC (R2 = 0.94), and RSBC (R2 = 0.97)] of process optimization model suggesting that this model was significant, where pH and adsorbent dose expressively stimulus removal efficiency including 99.88, and 99.89% for PETWBC, and RSBC at pH (2). Furthermore, the machine learning approaches (ANN and BB-RSM) revealed a good association between the tested and projected value. Pseudo-second-order was the well-suited kinetics, where Freundlich isotherm could explain better equilibrium adsorption data. Thermodynamic study shows AR 27 adsorption is favourable, endothermic, and spontaneous. Environmental friendliness properties are confirmed by desorption studies and satisfactory results also attain from real wastewater experiments. Finally, this study indicates that PETWBC and RSBC could be potential candidates for the adsorption of AR 27 from wastewater.


Asunto(s)
Colorante de Amaranto , Oryza , Hollín , Aguas Residuales , Aprendizaje Automático , Plásticos , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica , Tomografía Computarizada por Rayos X
5.
Heliyon ; 9(8): e18856, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37701407

RESUMEN

This study focuses on the probable use of municipal organic solid waste charcoal (MOSWC) as an adsorbent for Methyl orange (MO) adsorption. The prepared MOSWC is characterized by FE-SEM and FT-IR. Batch adsorption experiments were conducted with the influencing of different operational conditions namely time of contact (1-180 min), adsorbate concentration (60-140 mg/L), adsorbent dose (1-5 g/L), pH (3-11), and temperature (25-60 °C). The high coefficient value (R2 = 0.96) of the process optimization model suggests that this model was significant, where pH and adsorbent dose expressively stimulus adsorption efficiency including 40.11 mg/g at pH (3), MO concentration (100 mg/L), and MOSWC dose (1 g/L). Furthermore, the machine learning approaches (ANN and BB-RSM) revealed a good association between the tested and projected values. The highest monolayer adsorption capacity of MO was 90.909 mg/g. Pseudo-second-order was the well-suited kinetics, where Langmuir isotherm could explain better for equilibrium adsorption data. Thermodynamic study shows MO adsorption is favourable, exothermic, and spontaneous. Finally, this study indicates that MOSWC could be a potential candidate for the adsorption of MO from wastewater.

6.
Toxicol Rep ; 10: 308-319, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36891509

RESUMEN

Rapid urbanization and industrial development have prompted potentially toxic elements (PTEs) in urban soil in Bangladesh, which is a great concern for ecological and public health matters. The present study explored the receptor-based sources, probable human health and ecological risks of PTEs (As, Cd, Pb, Cr, Ni, and Cu) in the urban soil of the Jashore district, Bangladesh. The USEPA modified method 3050B and atomic absorption spectrophotometers were used to digest and evaluate the PTEs concentration in 71 soil samples collected from eleven different land use areas, respectively. The concentration ranges of As, Cd, Pb, Cr, Ni, and Cu in the studied soils were 1.8-18.09, 0.1-3.58, 0.4-113.26, 0.9-72.09, 2.1-68.23, and 3.82-212.57 mg/kg, respectively. The contamination factor (CF), pollution load index (PLI), and enrichment factor (EF) were applied to evaluate the ecological risk posed by PTEs in soils. Soil quality evaluation indices showed that Cd was a great contributor to soil pollution. The PLI values range was 0.48-2.82, indicating base levels to continuous soil degradation. The positive matrix factorization (PMF) model showed that As (50.3 %), Cd (38.8 %), Cu (64.7 %), Pb (81.8 %) and Ni (47.2 %) were derived from industrial sources and mixed anthropogenic sources, while Cr (78.1 %) from natural sources. The highest contamination was found in the metal workshop, followed by the industrial area, and brick filed site. Soil from all land use types revealed moderate to high ecological risk after evaluating probable ecological risks, and the descending order of single metal potential ecological risk was Cd > As > Pb > Cu > Ni > Cr. Ingestion was the primary route of exposure to potentially toxic elements for both adults and children from the study area soil. The overall non-cancer risk to human health is caused by PTEs for children (HI=0.65 ± 0.1) and adults (HI=0.09 ± 0.03) under USEPA safe limit (HI>1), while the cancer risks from exclusively ingesting As through soil were 2.10E-03 and 2.74E-04 for children and adults, respectively, exceeding the USEPA acceptable standard (>1E-04).

7.
Heliyon ; 8(10): e11172, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36325133

RESUMEN

This study was intended to assess heavy metal contents and sources in commonly consumed vegetables and fish collected from the Jashore district of Bangladesh and to evaluate the probable human health risks via the ingesting of those vegetables and fish species. A total of 130 vegetable and fish samples were analyzed for As, Mn, Cu, Cr, Ni, and Pb concentration by an atomic absorption spectrophotometer. Metals and metalloids like As, Pb, and Cr in vegetable species were greater than the maximum allowable concentration (MAC), while Pb and cu in fish species exceeded the MAC. Pollution evaluation index values were ranges from 0.40-10.35 and 1.53-2.78 for vegetable and fish species, respectively, indicating light to serious pollution. Lactuca sativa followed by Cucurbita moschata, Amaranthus gangeticus for vegetables and Channa punctate, Oreochromis mossambicus, followed by Dendrobranchiata for fish are the most contaminated food items. The positive matrix factorization model showed that As (81.9%), Ni (48%), Cr (49.6%), Mn (46%), Pb (44.3%), and Cu (44.4%) for vegetable species and As (86.9%), Ni (90.5%), Mn (67.6%), Pb (65.3%), Cr (57%) and Cu (46.2%) for fish species were resulting from agrochemical, atmospheric emission, irrigation, contaminated feed, and mixed sources. The self-organizing map and principle component analysis indicates three spatial patterns e.g., As-Mn-Cu, Pb-Cr, and Ni in vegetables and As-Mn-Cr, Cu-Ni, and Pb in fish samples. The THQ values for single elements were less than 1 (except As for vegetables and Pb for fish species) for all food items but the HI values for all of the vegetables (2.18E+00 to 2.04E+01) and fish (1.07E+00 to 9.39E+00) samples were exceeded the USEPA acceptable risk level (HI > 1E+00). While the cancer risks only induced by As for all vegetables and fish species, which exceeded the USEPA safe level (TCR>1E-04). Sensitivity analysis indicates that metal concentration was the most responsible factor for carcinogenic risk.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA