Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Acoust Soc Am ; 151(3): 1434, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35364914

RESUMEN

Bone conduction devices are used in audiometric tests, hearing rehabilitation, and communication systems. The mechanical impedance of the stimulated skull location affects the performance of the bone conduction devices. In the present study, the mechanical impedances of the mastoid and condyle were measured in 100 Chinese subjects aged from 22 to 67 years. The results show that the mastoid and condyle impedances within the same subject differ significantly and the impedance differences between subjects at the same stimulation position are mainly below the resonance frequency. The mechanical impedance of the mastoid is significantly influenced by age, and not related to gender or body mass index (BMI). While the mechanical impedance of the condyle is significantly affected by BMI, followed by gender, and not related to age. There are some differences in mastoid impedance between the Chinese and Western subjects. An analogy model predicts that the difference in mechanical impedance between the mastoid and condyle leads to a significant difference in the output force of the bone conduction devices. The results can be used to develop improved condyle and mastoid stimulators for the Chinese.


Asunto(s)
Audífonos , Apófisis Mastoides , Adulto , Anciano , Conducción Ósea/fisiología , Impedancia Eléctrica , Humanos , Apófisis Mastoides/fisiología , Persona de Mediana Edad , Cráneo/fisiología , Adulto Joven
2.
Front Neurosci ; 16: 1068682, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466173

RESUMEN

All hearing aid fittings should be validated with appropriate outcome measurements, whereas there is a lack of well-designed objective verification methods for bone conduction (BC) hearing aids, compared to the real-ear measurement for air conduction hearing aids. This study aims to develop a new objective verification method for BC hearing aids by placing a piezoelectric thin-film force transducer between the BC transducer and the stimulation position. The newly proposed method was compared with the ear canal method and the artificial mastoid method through audibility estimation. The audibility estimation adopted the responses from the transducers that correspond to the individual BC hearing thresholds and three different input levels of pink noise. Twenty hearing-impaired (HI) subjects without prior experience with hearing aids were recruited for this study. The measurement and analysis results showed that the force transducer and ear canal methods almost yielded consistent results, while the artificial mastoid method exhibited significant differences from these two methods. The proposed force transducer method showed a lower noise level and was less affected by the sound field signal when compared with other methods. This indicates that it is promising to utilize a piezoelectric thin-film force transducer as an in-situ objective measurement method of BC stimulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA