Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Biol Chem ; 289(4): 2043-54, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24337577

RESUMEN

The ankyrin and SOCS (suppressor of cytokine signaling) box (ASB) family of proteins function as the substrate recognition subunit in a subset of Elongin-Cullin-SOCS (ECS) E3 ubiquitin ligases. Despite counting 18 members in humans, the identity of the physiological targets of the Asb proteins remains largely unexplored. To increase our understanding of the function of ASB proteins, we conducted a family-wide SILAC (stable isotope labeling by amino acids in cell culture)-based protein/protein interaction analysis. This investigation led to the identification of novel as well as known ASB-associated proteins like Cullin 5 and Elongins B/C. We observed that several proteins can be bound by more than one Asb protein. The additional exploration of this phenomenon demonstrated that ASB-Cullin 5 complexes can oligomerize and provides evidence that Cullin 5 forms heterodimeric complexes with the Cullin 4a-DDB1 complex. We also demonstrated that ASB11 is a novel endoplasmic reticulum-associated ubiquitin ligase with the ability to interact and promote the ubiquitination of Ribophorin 1, an integral protein of the oligosaccharyltransferase (OST) glycosylation complex. Moreover, expression of ASB11 can increase Ribophorin 1 protein turnover in vivo. In summary, we provide a comprehensive protein/protein interaction data resource that can aid the biological and functional characterization of ASB ubiquitin ligases.


Asunto(s)
Proteínas Cullin/metabolismo , Retículo Endoplásmico/enzimología , Complejos Multienzimáticos/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Ubiquitinación/fisiología , Proteínas Cullin/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Retículo Endoplásmico/genética , Células HEK293 , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Complejos Multienzimáticos/genética , Proteínas Supresoras de la Señalización de Citocinas/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-17401192

RESUMEN

Histone deacetylases (HDACs) have emerged as attractive targets in anticancer drug development. To date, a number of HDAC inhibitors have been developed and most of them are hydroxamic acid derivatives, typified by suberoylanilide hydroxamic acid (SAHA). Not surprisingly, structural information that can greatly enhance the design of novel HDAC inhibitors is so far only available for hydroxamic acids in complex with HDAC or HDAC-like enzymes. Here, the first structure of an enzyme complex with a nonhydroxamate HDAC inhibitor is presented. The structure of the trifluoromethyl ketone inhibitor 9,9,9-trifluoro-8-oxo-N-phenylnonanamide in complex with bacterial FB188 HDAH (histone deacetylase-like amidohydrolase from Bordetella/Alcaligenes strain FB188) has been determined. HDAH reveals high sequential and functional homology to human class 2 HDACs and a high structural homology to human class 1 HDACs. Comparison with the structure of HDAH in complex with SAHA reveals that the two inhibitors superimpose well. However, significant differences in binding to the active site of HDAH were observed. In the presented structure the O atom of the trifluoromethyl ketone moiety is within binding distance of the Zn atom of the enzyme and the F atoms participate in interactions with the enzyme, thereby involving more amino acids in enzyme-inhibitor binding.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Histona Desacetilasas/química , Cetonas/farmacología , Animales , Cristalización , Cristalografía por Rayos X , Inhibidores de Histona Desacetilasas , Hígado/enzimología , Conformación Proteica , Ratas , Espectrometría de Masa por Ionización de Electrospray
3.
J Mol Biol ; 354(1): 107-20, 2005 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-16242151

RESUMEN

Histone deacetylases (HDACs) are among the most promising targets in cancer therapy. However, structural information greatly enhancing the design of HDAC inhibitors as novel chemotherapeutics has not been available on class 2 HDACs so far. Here we present the structure of the bacterial FB188 HDAH (histone deacetylase-like amidohydrolase from Bordetella/Alcaligenes strain FB188) that reveals high sequential and functional homology to human class 2 HDACs. FB188 HDAH is capable to remove the acetyl moiety from acetylated histones. Several HDAC-specific inhibitors, which have been shown to inhibit tumor activity in both pre-clinical models and in clinical trials, also inhibit FB188 HDAH. We have determined the crystal structure of FB188 HDAH at a resolution of 1.6 angstroms in complex with the reaction product acetate, as well as in complex with the inhibitors suberoylanilide hydroxamic acid (SAHA) and cyclopentyle-propionyle hydroxamic acid (CypX) at a resolution of 1.57 angstroms and 1.75 angstroms, respectively. FB188 HDAH exhibits the canonical fold of class 1 HDACs and contains a catalytic zinc ion. The highest structural diversity compared to class 1 enzymes is found in loop regions especially in the area around the entrance of the active site, indicating significant differences among the acetylated proteins binding to class 1 and 2 HDACs, respectively.


Asunto(s)
Bordetella/enzimología , Histona Desacetilasas/química , Acetatos/química , Amidohidrolasas/química , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Ácidos Hidroxámicos/química , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido , Vorinostat , Zinc
4.
J Biotechnol ; 124(1): 258-70, 2006 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-16567013

RESUMEN

Histone deacetylases (HDACs) are key enzymes in the transcriptional regulation of gene expression in eukaryotic cells. In recent years HDACs have attracted considerable attention as promising new targets in anticancer therapy. Currently, different histone deacetylase subtypes are divided into four groups denoted as classes 1-4. Here, we compare in more detail representatives of class 1 HDACs and FB188 HDAH as a close bacterial homologue of class 2 HDAC6, in regard of substrate and inhibitor specificity. Structure comparison is used to identify candidate regions responsible for observed specificity differences. Knowledge of these structural elements expedite studies on the biochemical role of different HDAC subtypes as well as the development of highly selective HDAC inhibitors as antitumor agents.


Asunto(s)
Inhibidores de Histona Desacetilasas , Histona Desacetilasas/química , Histona Desacetilasas/clasificación , Ácidos Hidroxámicos/antagonistas & inhibidores , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Histona Desacetilasas/genética , Humanos , Concentración de Iones de Hidrógeno , Ácidos Hidroxámicos/química , Concentración 50 Inhibidora , Cinética , Modelos Moleculares , Estructura Molecular , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Represoras/química , Relación Estructura-Actividad , Especificidad por Sustrato
5.
J Mol Biol ; 428(1): 92-107, 2016 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-26334369

RESUMEN

Cullin3 (Cul3)-based ubiquitin E3 ligase complexes catalyze the transfer of ubiquitin from an E2 enzyme to target substrate proteins. In these assemblies, the C-terminal region of Cul3 binds Rbx1/E2-ubiquitin, while the N-terminal region interacts with various BTB (bric-à-brac, tramtrack, broad complex) domain proteins that serve as substrate adaptors. Previous crystal structures of the homodimeric BTB proteins KLHL3, KLHL11 and SPOP in complex with the N-terminal domain of Cul3 revealed the features required for Cul3 recognition in these proteins. A second class of BTB-domain-containing proteins, the KCTD proteins, is also Cul3 substrate adaptors, but these do not share many of the previously identified determinants for Cul3 binding. We report the pentameric crystal structures of the KCTD1 and KCTD9 BTB domains and identify plasticity in the KCTD1 rings. We find that the KCTD proteins 5, 6, 9 and 17 bind to Cul3 with high affinity, while the KCTD proteins 1 and 16 do not have detectable binding. Finally, we confirm the 5:5 assembly of KCTD9/Cul3 complexes by cryo-electron microscopy and provide a molecular rationale for BTB-mediated Cul3 binding specificity in the KCTD family.


Asunto(s)
Proteínas Cullin/metabolismo , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Canales de Potasio/química , Canales de Potasio/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Proteínas Co-Represoras , Microscopía por Crioelectrón , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica , Conformación Proteica , Multimerización de Proteína
6.
PLoS One ; 9(6): e98760, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24896608

RESUMEN

The metabolism of gluconate is well characterized in prokaryotes where it is known to be degraded following phosphorylation by gluconokinase. Less is known of gluconate metabolism in humans. Human gluconokinase activity was recently identified proposing questions about the metabolic role of gluconate in humans. Here we report the recombinant expression, purification and biochemical characterization of isoform I of human gluconokinase alongside substrate specificity and kinetic assays of the enzyme catalyzed reaction. The enzyme, shown to be a dimer, had ATP dependent phosphorylation activity and strict specificity towards gluconate out of 122 substrates tested. In order to evaluate the metabolic impact of gluconate in humans we modeled gluconate metabolism using steady state metabolic network analysis. The results indicate that significant metabolic flux changes in anabolic pathways linked to the hexose monophosphate shunt (HMS) are induced through a small increase in gluconate concentration. We argue that the enzyme takes part in a context specific carbon flux route into the HMS that, in humans, remains incompletely explored. Apart from the biochemical description of human gluconokinase, the results highlight that little is known of the mechanism of gluconate metabolism in humans despite its widespread use in medicine and consumer products.


Asunto(s)
Gluconatos/química , Gluconatos/metabolismo , Redes y Vías Metabólicas , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Eritrocitos/metabolismo , Escherichia coli/enzimología , Humanos , Cinética , Modelos Moleculares , Fosforilación , Conformación Proteica , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA