Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chemosphere ; 309(Pt 2): 136809, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36228721

RESUMEN

This work aims at evaluating the fate of microplastics (MPs) along Fenton oxidation. For such goal, realistic MPs (150-250 µm) of five representative polymer types (PET, PE, PVC, PP and EPS) were obtained from commercial plastic products by cryogenic milling. Experiments (7.5 h) were performed under relatively severe operating conditions: T = 80 °C; pH0 = 3; [H2O2]0 = 1000 mgL-1 (15 doses, 1 every 0.5 h); [Fe3+]0 = 10 mgL-1 (5 doses, 1 every 1.5 h). Slight MPs weight losses (∼10%) were achieved after Fenton oxidation regardless the MP nature. Nevertheless, oxidation yield clearly increased with decreasing the particle size given their higher exposed surface area (up to 20% weight loss with 20-50 µm EPS MPs). Clearly, MPs suffered important changes in their surface due to the introduction of oxygenated groups, which made them more acidic and hydrophilic. Furthermore, MPs progressively reduced their size. In fact, they can be completely oxidized to CO2, as demonstrated in the oxidation of PS nanoplastics (140 nm), where 70% mineralization was achieved. The nature of the plastic particles had a relevant impact on its overall oxidation, being more prone to be oxidized those polymers which contain aromatic rings in their structures (EPS and PET) compared to those formed by alkane chains (PE, PP and PVC). In the latter, the presence of substituents also reduced their oxidation potential. Remarkably, possible leachates released along reaction were more quickly oxidized than the MPs/NPs, so it can be assumed that these dissolved compounds would be completely removed once the solid particles are eliminated. Notably, the leachates obtained upon MPs oxidation were more biodegradable than the released from the fresh solids. All this knowledge is crucial for the understanding of MPs oxidation by the Fenton process and opens the door for the design and optimization of this technology either for water treatment or for analytical purposes (MPs isolation).


Asunto(s)
Microplásticos , Plásticos , Peróxido de Hidrógeno/química , Dióxido de Carbono , Cloruro de Polivinilo , Alcanos
2.
Chemosphere ; 283: 131085, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34146885

RESUMEN

This work aims at evaluating the role of nature, size, age, and natural organic matter (NOM) fouling of realistic microplastics (MPs) on the adsorption of two persistent micropollutants (diclofenac (DCF) and metronidazole (MNZ)). For such goal, four representative polymer types (polystyrene (PS), polyethylene terephthalate (PET), polypropylene (PP) and high-density polyethylene (HDPE)) were tested. MPs were obtained by cryogenic milling of different commercial materials (disposable bottles, containers, and trays), and fully characterized (optical microscopic and SEM images, FTIR, elemental analysis, water contact angle and pHslurry). The micropollutants hydrophobicity determined to a high extent their removal yield from water. Regardless of the MP's nature, the adsorption capacity for DCF was considerably higher than the achieved for MNZ, which can be related to its stronger hydrophobic properties and aromatic character. In fact, aromatic MPs (PS and PET) showed the highest adsorption capacity values with DCF (~100 µg g-1). The MP size also played a key role on its adsorption capacity, which was found to increase with decreasing the particle size (20-1000 µm). MPs aging (simulated by Fenton oxidation) led also to substantial changes on their sorption behavior. Oxidized MPs exhibited acidic surface properties which led to a strong decrease on the adsorption of the hydrophobic micropollutant (DCF) but to an increase with the hydrophilic one (MNZ). NOM fouling (WWTP effluent, river water, humic acid solution) led to a dramatic decrease on the MPs sorption capacity due to sorption sites blocking. Finally, the increase of pH or salinity of the aqueous medium increased the micropollutants desorption.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Adsorción , Plásticos , Poliestirenos , Contaminantes Químicos del Agua/análisis
3.
Water Res ; 163: 114853, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31310856

RESUMEN

The occurrence of harmful cyanobacterial blooms has unabated increased over the last few decades, posing a significant risk for public health. In this work, we investigate the feasibility of catalytic wet peroxide oxidation (CWPO) promoted by modified natural magnetite (Fe3O4-R400/H2O2), as an inexpensive, simple-operation and environmentally-friendly process for the removal of the cyanotoxins that show the major impact on drinking water: microcystins (MC-LR and MC-RR), cylindrospermopsin (CYN), anatoxin-a (ATX) and saxitoxin (STX). The performance of the system was evaluated under ambient conditions and circumneutral pH (pH0 = 5) using relevant cyanotoxin concentrations (100-500 µg L-1). The nature of the cyanotoxins determined their reactivity towards CWPO, which decreased in the following order: MC-RR > CYN > MC-LR ≫ ATX > STX. In this sense, microcystins and CYN were completely removed in short reaction times (1-1.5 h) with a low catalyst concentration (0.2 g L-1) and the stoichiometric amount of H2O2 (2-2.6 mg L-1), while only 60-80% conversion was achieved with ATX and STX in 5 h. In these cases, an intensification of the operating conditions (1 g L-1 catalyst and up to 30 mg H2O2 L-1) was required to remove both toxins in 1 h. The impact of the main components of freshwaters i.e. natural organic matter (NOM) and several inorganic ions (HCO3-, HPO42-, SO42-) on the performance of the process was also investigated. Although the former led to a partial inhibition of the reaction due to HO· scavenging and catalyst coating, the latter did not show any remarkably effect, and the versatility of the process was finally confirmed in a real surface water. To further demonstrate the effectiveness of the catalytic system, the toxicity of both the initial cyanotoxins and the resulting CWPO effluents was measured with the brine shrimp Artemia salina. Remarkably, all CWPO effluents were non-toxic at the end of the treatment.


Asunto(s)
Agua Potable , Microcistinas , Alcaloides , Toxinas Bacterianas , Toxinas de Cianobacterias , Peróxido de Hidrógeno , Peróxidos , Saxitoxina , Tropanos , Uracilo/análogos & derivados
4.
Chemosphere ; 213: 141-148, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30216814

RESUMEN

Aqueous-phase catalytic hydrodechlorination (HDC) has been scarcely explored in the literature for the removal of chlorinated micropollutants. The aim of this work is to prove the feasibility of this technology for the fast and environmentally-friendly degradation of such kind of compounds. Diclofenac (DCF), a highly consumed anti-inflammatory drug, has been selected as the target pollutant given its toxicity and low biodegradability. The commercial Pd/Al2O3 (1% wt.) catalyst has been used due to its prominent role on this field. Complete degradation of DCF was achieved in a short reaction time (20 min) under ambient conditions (25 °C, 1 atm) at [DCF]0 = 68 µM; [Pd/Al2O3]0 = 0.5 g L-1 and H2 flow rate of 50 N mL min-1. Remarkably, the chlorinated intermediate (2-(2-chloroanilino)-phenylacetate (Cl-APA)) generated along reaction was completely removed at the same time, being the chlorine-free compound 2-anilinophenylacetate (APA) the only final product. A reaction scheme based on this consecutive pathway and a pseudo-first-order kinetic model have been proposed. An apparent activation energy of 43 kJ mol-1 was obtained, a comparable value to those previously reported for conventional organochlorinated pollutants. Remarkably, the catalyst exhibited a reasonable stability upon three successive uses, achieving the complete degradation of the drug and obtaining APA as the final product in 30 min. The evolution of ecotoxicity was intimately related to the disappearance of the chlorinated organic compounds and thus, the final HDC effluents were non-toxic. The versatility of the system was finally demonstrated in different environmentally-relevant matrices (wastewater treatment plant effluent and surface water).


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Diclofenaco/uso terapéutico , Halogenación/efectos de los fármacos , Antiinflamatorios no Esteroideos/farmacología , Catálisis , Diclofenaco/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA