Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Drug Resist ; 6(4): 788-804, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38263982

RESUMEN

Drug resistance that affects patients universally is a major challenge in cancer therapy. The development of drug resistance in cancer cells is a multifactor event, and its process involves numerous mechanisms that allow these cells to evade the effect of treatments. As a result, the need to understand the molecular mechanisms underlying cancer drug sensitivity is imperative. Traditional 2D cell culture systems have been utilized to study drug resistance, but they often fail to mimic the 3D milieu and the architecture of real tissues and cell-cell interactions. As a result of this, 3D cell culture systems are now considered a comprehensive model to study drug resistance in vitro. Cancer cells exhibit an in vivo behavior when grown in a three-dimensional environment and react to therapy more physiologically. In this review, we discuss the relevance of main 3D culture systems in the study of potential approaches to overcome drug resistance and in the identification of personalized drug targets with the aim of developing patient-specific treatment strategies that can be put in place when resistance emerges.

2.
Am J Clin Exp Immunol ; 11(1): 1-27, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35350450

RESUMEN

Breast cancer is the most frequently happening cancer and the most typical cancer death among females. Despite the crucial progress in breast cancer therapy by using Chemotherapeutic agents, most anti-tumor drugs are insufficient to destroy exactly the breast cancer cells. The noble method of drug delivery using nanoparticles presents a great promise in treating breast cancer most sufficiently and with the least harm to the patient. Nanoparticles, with their spectacular characteristics, help overcome problems of this kind. Unique features of nanoparticles such as biocompatibility, bioavailability, biodegradability, sustained release, and, most importantly, site-specific targeting enables the Chemotherapeutic agents loaded in nanocarriers to differentiate between healthy tissue and cancer cells, leading to low toxicity and fewer side effects. This review focuses on evaluating and comprehending nanoparticles utilized in breast cancer treatment, including the most recent data related to the drugs they can carry. Also, this review covers all information related to each nanocarrier, such as their significant characteristics, subtypes, advantages, disadvantages, and chemical modification methods with recently published studies. This article discusses over 21 nanoparticles used in breast cancer treatment with possible chemical ligands such as monoclonal antibodies and chemotherapeutic agents binding to these carriers. These different nanoparticles and the unique features of each nanocarrier give the researchers all the data and insight to develop and use the brand-new drug delivery system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA