Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
ArXiv ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38979489

RESUMEN

Real-time monitoring of dynamic biological processes in the body is critical to understanding disease progression and treatment response. This data, for instance, can help address the lower than 50% response rates to cancer immunotherapy. However, current clinical imaging modalities lack the molecular contrast, resolution, and chronic usability for rapid and accurate response assessments. Here, we present a fully wireless image sensor featuring a 2.5×5 mm2 CMOS integrated circuit for multicolor fluorescence imaging deep in tissue. The sensor operates wirelessly via ultrasound (US) at 5 cm depth in oil, harvesting energy with 221 mW/cm2 incident US power density (31% of FDA limits) and backscattering data at 13 kbps with a bit error rate <10-6. In-situ fluorescence excitation is provided by micro-laser diodes controlled with a programmable on-chip driver. An optical frontend combining a multi-bandpass interference filter and a fiber optic plate provides >6 OD excitation blocking and enables three-color imaging for detecting multiple cell types. A 36×40-pixel array captures images with <125 µm resolution. We demonstrate wireless, dual-color fluorescence imaging of both effector and suppressor immune cells in ex vivo mouse tumor samples with and without immunotherapy. These results show promise for providing rapid insight into therapeutic response and resistance, guiding personalized medicine.

2.
Nano Lett ; 12(3): 1527-33, 2012 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22313389

RESUMEN

Solution-processed thin-films of semiconducting carbon nanotubes as the channel material for flexible electronics simultaneously offers high performance, low cost, and ambient stability, which significantly outruns the organic semiconductor materials. In this work, we report the use of semiconductor-enriched carbon nanotubes for high-performance integrated circuits on mechanically flexible substrates for digital, analog and radio frequency applications. The as-obtained thin-film transistors (TFTs) exhibit highly uniform device performance with on-current and transconductance up to 15 µA/µm and 4 µS/µm. By performing capacitance-voltage measurements, the gate capacitance of the nanotube TFT is precisely extracted and the corresponding peak effective device mobility is evaluated to be around 50 cm(2)V(-1)s(-1). Using such devices, digital logic gates including inverters, NAND, and NOR gates with superior bending stability have been demonstrated. Moreover, radio frequency measurements show that cutoff frequency of 170 MHz can be achieved in devices with a relatively long channel length of 4 µm, which is sufficient for certain wireless communication applications. This proof-of-concept demonstration indicates that our platform can serve as a foundation for scalable, low-cost, high-performance flexible electronics.


Asunto(s)
Nanotecnología/instrumentación , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestructura , Semiconductores , Telecomunicaciones/instrumentación , Transistores Electrónicos , Módulo de Elasticidad , Diseño de Equipo , Análisis de Falla de Equipo , Procesamiento de Señales Asistido por Computador
3.
Nano Lett ; 12(8): 4140-5, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22746202

RESUMEN

This paper reports the radio frequency (RF) performance of InAs nanomembrane transistors on both mechanically rigid and flexible substrates. We have employed a self-aligned device architecture by using a T-shaped gate structure to fabricate high performance InAs metal-oxide-semiconductor field-effect transistors (MOSFETs) with channel lengths down to 75 nm. RF measurements reveal that the InAs devices made on a silicon substrate exhibit a cutoff frequency (f(t)) of ∼165 GHz, which is one of the best results achieved in III-V MOSFETs on silicon. Similarly, the devices fabricated on a bendable polyimide substrate provide a f(t) of ∼105 GHz, representing the best performance achieved for transistors fabricated directly on mechanically flexible substrates. The results demonstrate the potential of III-V-on-insulator platform for extremely high-frequency (EHF) electronics on both conventional silicon and flexible substrates.

4.
Lab Chip ; 18(14): 2065-2076, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29872834

RESUMEN

This work presents a microfluidics-integrated label-free flow cytometry-on-a-CMOS platform for the characterization of the cytoplasm dielectric properties at microwave frequencies. Compared with MHz impedance cytometers, operating at GHz frequencies offers direct intracellular permittivity probing due to electric fields penetrating through the cellular membrane. To overcome the detection challenges at high frequencies, the spectrometer employs on-chip oscillator-based sensors, which embeds simultaneous frequency generation, electrode excitation, and signal detection capabilities. By employing an injection-locking phase-detection technique, the spectrometer offers state-of-the-art sensitivity, achieving a less than 1 aFrms capacitance detection limit (or 5 ppm in frequency-shift) at a 100 kHz noise filtering bandwidth, enabling high throughput (>1k cells per s), with a measured cellular SNR of more than 28 dB. With CMOS/microfluidics co-design, we distribute four sensing channels at 6.5, 11, 17.5, and 30 GHz in an arrayed format whereas the frequencies are selected to center around the water relaxation frequency at 18 GHz. An issue in the integration of CMOS and microfluidics due to size mismatch is also addressed through introducing a cost-efficient epoxy-molding technique. With 3-D hydrodynamic focusing microfluidics, we perform characterization on four different cell lines including two breast cell lines (MCF-10A and MDA-MB-231) and two leukocyte cell lines (K-562 and THP-1). After normalizing the higher frequency signals to the 6.5 GHz ones, the size-independent dielectric opacity shows a differentiable distribution at 17.5 GHz between normal (0.905 ± 0.160, mean ± std.) and highly metastatic (1.033 ± 0.107) breast cells with p ≪ 0.001.


Asunto(s)
Espectroscopía Dieléctrica/instrumentación , Citometría de Flujo/instrumentación , Dispositivos Laboratorio en un Chip , Metales/química , Microondas , Semiconductores , Análisis de la Célula Individual/instrumentación , Línea Celular Tumoral , Humanos , Óxidos/química
5.
Artículo en Inglés | MEDLINE | ID: mdl-22254359

RESUMEN

This paper introduces a silicon-based imaging array for remote measurements of complex permittivity of tissue. Using a coherent pulsed measurement approach, this time-frequency resolved technique recovers the three dimensional mapping of electrical properties of the subject in the microwave/millimeter-wave frequency spectrum. Some of the major challenges in the design of the system are described. Initial measurement results from the prototype high-resolution transmitter fabricated in a 0.13 µm SiGe process are described. The transmitter achieves pulse widths suitable for millimeter-level accuracy imaging.


Asunto(s)
Imagenología Tridimensional/instrumentación , Microondas , Pletismografía de Impedancia/instrumentación , Procesamiento de Señales Asistido por Computador/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
6.
ACS Nano ; 4(10): 5855-60, 2010 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-20845916

RESUMEN

The radio frequency response of InAs nanowire array transistors on mechanically flexible substrates is characterized. For the first time, GHz device operation of nanowire arrays is demonstrated, despite the relatively long channel lengths of ∼1.5 µm used in this work. Specifically, the transistors exhibit an impressive maximum frequency of oscillation, f(max) ∼ 1.8 GHz, and a cutoff frequency, f(t) ∼ 1 GHz. The high-frequency response of the devices is due to the high saturation velocity of electrons in high-mobility InAs nanowires. The work presents a new platform for flexible, ultrahigh frequency devices with potential applications in high-performance digital and analog circuitry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA