Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Biochemistry ; 59(35): 3225-3234, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32786414

RESUMEN

RNA helices are often punctuated with non-Watson-Crick features that may be targeted by chemical compounds, but progress toward identifying such compounds has been slow. We embedded a tandem UU:GA mismatch motif (5'-UG-3':5'-AU-3') within an RNA hairpin stem to identify compounds that bind the motif specifically. The three-dimensional structure of the RNA hairpin and its interaction with a small molecule identified through virtual screening are presented. The G-A mismatch forms a sheared pair upon which the U-U base pair stacks. The hydrogen bond configuration of the U-U pair involves O2 of the U adjacent to the G and O4 of the U adjacent to the A. The G-A and U-U pairs are flanked by A-U and G-C base pairs, respectively, and the stability of the mismatch is greater than when the motif is within the context of other flanking base pairs or when the 5'-3' orientation of the G-A and U-U pairs is swapped. Residual dipolar coupling constants were used to generate an ensemble of structures against which a virtual screen of 64480 small molecules was performed. The tandem mismatch was found to be specific for one compound, 2-amino-1,3-benzothiazole-6-carboxamide, which binds with moderate affinity but extends the motif to include the flanking A-U and G-C base pairs. The finding that the affinity for the UU:GA mismatch is dependent on flanking sequence emphasizes the importance of the motif context and potentially increases the number of small noncanonical features within RNA that can be specifically targeted by small molecules.


Asunto(s)
Disparidad de Par Base , Benzotiazoles/farmacocinética , ARN/química , ARN/metabolismo , Amidas/farmacocinética , Disparidad de Par Base/efectos de los fármacos , Emparejamiento Base/efectos de los fármacos , Secuencia de Bases/fisiología , Fenómenos Biofísicos , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación de Ácido Nucleico , ARN/efectos de los fármacos , ARN no Traducido/química , ARN no Traducido/efectos de los fármacos , ARN no Traducido/metabolismo , Especificidad por Sustrato , Termodinámica
2.
Biochemistry ; 56(21): 2690-2700, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28488852

RESUMEN

The three-dimensional structure of a RNA hairpin containing the RNA operator binding site for bacteriophage GA coat protein is presented. The phage GA operator contains the asymmetric (A-A)-U sequence motif and is capped by a four-adenine (tetra-A) loop. The uridine of the (A-A)-U motif preferentially pairs with the 5'-proximal cross-strand adenine, and the 3'-proximal adenine stacks into the helix. The tetra-A loop is well-ordered with adenine residues 2-4 forming a 3' stack. This loop conformation stands in contrast to the structure of the 5'-AUUA loop of the related phage MS2 operator in which residues 1 and 2 form a 5' stack. The context dependence of the (A-A)-U sequence motif conformation was examined using structures of 76 unique occurrences from the Protein Data Bank. The motif almost always has one adenine bulged and the other adenine adopting an A-U base pair. In the case in which the (A-A)-U motif is flanked by only one Watson-Crick base pair, the adenine adjacent to the flanking base pair tends to bulge; 80% of motifs with a 3' flanking pair have a 3' bulged adenine, and 84% of motifs with a 5' flanking pair have a 5' bulged adenine. The frequencies of 3'- and 5'-proximal adenines bulging are 33 and 67%, respectively, when the (A-A)-U motif is flanked by base pairs on both sides. Although a 3' flanking cytidine correlates (88%) with bulging of the 5'-proximal adenine, no strict dependence on flanking nucleotide identity was identified for the 5' side.


Asunto(s)
Colifagos/enzimología , Colifagos/genética , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Motivos de Nucleótidos , Regiones Operadoras Genéticas/genética , ARN Polimerasa Dependiente del ARN/metabolismo , ARN/química , Secuencia de Bases , Modelos Moleculares , ARN/genética
3.
Biochemistry ; 56(28): 3549-3558, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28621923

RESUMEN

In Gram-positive bacteria, the tRNA-dependent T-box riboswitch system regulates expression of amino acid biosynthetic and aminoacyl-tRNA synthetase genes through a transcription attenuation mechanism. Binding of uncharged tRNA "closes" the switch, allowing transcription read-through. Structural studies of the 100-nucleotide stem I domain reveal tRNA utilizes base pairing and stacking interactions to bind the stem, but little is known structurally about the 180-nucleotide riboswitch core (stem I, stem III, and antiterminator stem) in complex with tRNA or the mechanism of coupling of the intermolecular binding domains crucial to T-box function. Here we utilize solution structural and biophysical methods to characterize the interplay of the different riboswitch-tRNA contact points using Bacillus subtilis and Oceanobacillus iheyensis glycyl T-box and T-box:tRNA constructs. The data reveal that tRNA:riboswitch core binding at equilibrium involves only Specifier-anticodon and antiterminator-acceptor stem pairing. The elbow:platform stacking interaction observed in studies of the T-box stem I domain is released after pairing between the acceptor stem and the bulge in the antiterminator helix. The results are consistent with the model of T-box riboswitch:tRNA function in which tRNA is captured by stem I of the nascent mRNA followed by stabilization of the antiterminator helix and the paused transcription complex.


Asunto(s)
Bacillaceae/metabolismo , ARN Bacteriano/metabolismo , ARN de Transferencia/metabolismo , Riboswitch , Bacillaceae/química , Bacillus subtilis/química , Bacillus subtilis/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , ARN Bacteriano/química , ARN de Transferencia/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X
4.
Nat Methods ; 11(4): 413-6, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24584194

RESUMEN

Structured noncoding RNAs underlie fundamental cellular processes, but determining their three-dimensional structures remains challenging. We demonstrate that integrating ¹H NMR chemical shift data with Rosetta de novo modeling can be used to consistently determine high-resolution RNA structures. On a benchmark set of 23 noncanonical RNA motifs, including 11 'blind' targets, chemical-shift Rosetta for RNA (CS-Rosetta-RNA) recovered experimental structures with high accuracy (0.6-2.0 Å all-heavy-atom r.m.s. deviation) in 18 cases.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Motivos de Nucleótidos , ARN no Traducido/química , Animales
5.
Nucleic Acids Res ; 42(16): 10795-808, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25140011

RESUMEN

Several protein-targeted RNA aptamers have been identified for a variety of applications and although the affinities of numerous protein-aptamer complexes have been determined, the structural details of these complexes have not been widely explored. We examined the structural accommodation of an RNA aptamer that binds bacterial r-protein S8. The core of the primary binding site for S8 on helix 21 of 16S rRNA contains a pair of conserved base triples that mold the sugar-phosphate backbone to S8. The aptamer, which does not contain the conserved sequence motif, is specific for the rRNA binding site of S8. The protein-free RNA aptamer adopts a helical structure with multiple non-canonical base pairs. Surprisingly, binding of S8 leads to a dramatic change in the RNA conformation that restores the signature S8 recognition fold through a novel combination of nucleobase interactions. Nucleotides within the non-canonical core rearrange to create a G-(G-C) triple and a U-(A-U)-U quartet. Although native-like S8-RNA interactions are present in the aptamer-S8 complex, the topology of the aptamer RNA differs from that of the helix 21-S8 complex. This is the first example of an RNA aptamer that adopts substantially different secondary structures in the free and protein-bound states and highlights the remarkable plasticity of RNA secondary structure.


Asunto(s)
Aptámeros de Nucleótidos/química , Bacillus anthracis , Proteínas Bacterianas/química , Proteínas Ribosómicas/química , Sitios de Unión , Modelos Moleculares , Conformación de Ácido Nucleico , ARN Ribosómico 16S/química
6.
Biochemistry ; 51(17): 3662-74, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22468768

RESUMEN

Although the fate of most tRNA molecules in the cell is aminoacylation and delivery to the ribosome, some tRNAs are destined to fulfill other functional roles. In addition to their central role in translation, tRNA molecules participate in processes such as regulation of gene expression, bacterial cell wall biosynthesis, viral replication, antibiotic biosynthesis, and suppression of alternative splicing. In bacteria, glycyl-tRNA molecules with anticodon sequences GCC and UCC exhibit multiple extratranslational functions, including transcriptional regulation and cell wall biosynthesis. We have determined the high-resolution structures of three glycyl-tRNA anticodon arms with anticodon sequences GCC and UCC. Two of the tRNA molecules are proteinogenic (tRNA(Gly,GCC) and tRNA(Gly,UCC)), and the third is nonproteinogenic (np-tRNA(Gly,UCC)) and participates in cell wall biosynthesis. The UV-monitored thermal melting curves show that the anticodon arm of tRNA(Gly,UCC) with a loop-closing C-A(+) base pair melts at a temperature 10 °C lower than those of tRNA(Gly,GCC) and np-tRNA(Gly,UCC). U-A and C-G pairs close the loops of the latter two molecules and enhance stem stability. Mg(2+) stabilizes the tRNA(Gly,UCC) anticodon arm and reduces the T(m) differential. The structures of the three tRNA(Gly) anticodon arms exhibit small differences among one another, but none of them form the classical U-turn motif. The anticodon loop of tRNA(Gly,GCC) becomes more dynamic and disordered in the presence of multivalent cations, whereas metal ion coordination in the anticodon loops of tRNA(Gly,UCC) and np-tRNA(Gly,UCC) establishes conformational homogeneity. The conformational similarity of the molecules is greater than their functional differences might suggest. Because aminoacylation of full-length tRNA molecules is accomplished by one tRNA synthetase, the similar structural context of the loop may facilitate efficient recognition of each of the anticodon sequences.


Asunto(s)
Anticodón/química , Anticodón/fisiología , Biosíntesis de Proteínas , ARN de Transferencia de Glicerina/química , Transcripción Genética , Aminoacilación/genética , Pared Celular/química , Pared Celular/genética , Glicina-ARNt Ligasa/química , Glicina-ARNt Ligasa/genética , Resonancia Magnética Nuclear Biomolecular/métodos , Conformación de Ácido Nucleico , Biosíntesis de Proteínas/genética , Conformación Proteica , Staphylococcus aureus/genética , Repeticiones de Trinucleótidos/genética
7.
Mol Microbiol ; 82(3): 634-47, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21923765

RESUMEN

AtxA, a unique regulatory protein of unknown molecular function, positively controls expression of the major virulence genes of Bacillus anthracis. The 475 amino acid sequence of AtxA reveals DNA binding motifs and regions similar to proteins associated with the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS). We used strains producing native and functional epitope-tagged AtxA proteins to examine protein-protein interactions in cell lysates and in solutions of purified protein. Co-affinity purification, non-denaturing polyacrylamide gel electrophoresis and bis(maleimido)hexane (BMH) cross-linking experiments revealed AtxA homo-multimers. Dimers were the most abundant species. BMH cross-links available cysteines within 13 Å. To localize interaction sites, six AtxA mutants containing distinct Cys→Ser substitutions were tested for multimerization and cross-linking. All mutants multimerized, but one mutation, C402S, prevented cross-linking. Thus, BMH uses C402 to make the inter-molecular bond between AtxA proteins, but C402 is not required for protein-protein interaction. C402 is in a region bearing amino acid similarity to Enzyme IIB proteins of the PTS. The AtxA EIIB motif may function in protein oligomerization. Finally, cultures grown with elevated CO(2) /bicarbonate exhibited increased AtxA dimer/monomer ratios and increased AtxA activity, relative to cultures grown without added CO(2) /bicarbonate, suggesting that this host-associated signal enhances AtxA function by shifting the dimer/monomer equilibrium towards the dimeric state.


Asunto(s)
Bacillus anthracis/patogenicidad , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dióxido de Carbono/metabolismo , Regulación Bacteriana de la Expresión Génica , Multimerización de Proteína , Transactivadores/química , Transactivadores/metabolismo , Sustitución de Aminoácidos , Bacillus anthracis/fisiología , Proteínas Bacterianas/genética , Cromatografía de Afinidad , Reactivos de Enlaces Cruzados/metabolismo , Electroforesis en Gel de Poliacrilamida , Humanos , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mapeo de Interacción de Proteínas , Transactivadores/genética , Virulencia
8.
Nucleic Acids Res ; 38(10): 3388-98, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20110252

RESUMEN

Gram-positive bacteria utilize a tRNA-responsive transcription antitermination mechanism, designated the T box system, to regulate expression of many amino acid biosynthetic and aminoacyl-tRNA synthetase genes. The RNA transcripts of genes controlled by this mechanism contain 5' untranslated regions, or leader RNAs, that specifically bind cognate tRNA molecules through pairing of nucleotides in the tRNA anticodon loop with nucleotides in the Specifier Loop domain of the leader RNA. We have determined the solution structure of the Specifier Loop domain of the tyrS leader RNA from Bacillus subtilis. Fifty percent of the nucleotides in the Specifier Loop domain adopt a loop E motif. The Specifier Sequence nucleotides, which pair with the tRNA anticodon, stack with their Watson-Crick edges rotated toward the minor groove and exhibit only modest flexibility. We also show that a Specifier Loop domain mutation that impairs the function of the B. subtilis glyQS T box RNA disrupts the tyrS loop E motif. Our results suggest a mechanism for tRNA-Specifier Loop binding in which the phosphate backbone kink created by the loop E motif causes the Specifier Sequence bases to rotate toward the minor groove, which increases accessibility for pairing with bases in the anticodon loop of tRNA.


Asunto(s)
Regiones no Traducidas 5' , Bacillus subtilis/genética , Tirosina-ARNt Ligasa/genética , Secuencia de Bases , Sitios de Unión , Metales/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico
9.
Magn Reson Chem ; 46(5): 432-5, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18288679

RESUMEN

A pulse sequence of z-restored spin echo, -pi-beta-tau-pi-tau-, employing a pi pulse in the middle of the delay (2tau) to form a spin echo and the two pi pulses together to restore the residual longitudinal magnetization back to + z direction, is described. (13)C spectra of organic compounds provide a wealth of structural information; however, (13)C 1D spectra acquired using reverse geometry probes can have significant baseline humps or rolls because of pulse ring-down within the coil. The baseline distortions are especially apparent in spectra acquired using cryogenically enhanced probes. The baseline problem may be alleviated by extending the delay between the last pulse and the starting point of acquisition. However, uses of long delay times introduce large negative first-order phase corrections which themselves produce baseline roll. The prescribed experiment can be used to completely remove the hump, roll or dip in the baseline of the (13)C spectrum and at the same time obtain sensitivity similar to the experiment of a single beta pulse. We believe that this experiment will be of general applications in acquiring high-quality (13)C NMR data with reverse geometry probes and spectral interpretation.


Asunto(s)
Algoritmos , Artefactos , Radioisótopos de Carbono/análisis , Radioisótopos de Carbono/química , Frío , Espectroscopía de Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Marcadores de Spin
10.
Nat Commun ; 9(1): 1896, 2018 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-29760498

RESUMEN

In Gram-positive bacteria, T-box riboswitches control gene expression to maintain the cellular pools of aminoacylated tRNAs essential for protein biosynthesis. Co-transcriptional binding of an uncharged tRNA to the riboswitch stabilizes an antiterminator, allowing transcription read-through, whereas an aminoacylated tRNA does not. Recent structural studies have resolved two contact points between tRNA and Stem-I in the 5' half of the T-box riboswitch, but little is known about the mechanism empowering transcriptional control by a small, distal aminoacyl modification. Using single-molecule fluorescence microscopy, we have probed the kinetic and structural underpinnings of tRNA binding to a glycyl T-box riboswitch. We observe a two-step mechanism where fast, dynamic recruitment of tRNA by Stem-I is followed by ultra-stable anchoring by the downstream antiterminator, but only without aminoacylation. Our results support a hierarchical sensing mechanism wherein dynamic global binding of the tRNA body is followed by localized readout of its aminoacylation status by snap-lock-based trapping.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Bacterias Grampositivas/genética , ARN Bacteriano/química , ARN de Transferencia/química , Riboswitch , Emparejamiento Base , Bacterias Grampositivas/metabolismo , Microscopía Fluorescente , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Imagen Individual de Molécula , Aminoacilación de ARN de Transferencia
11.
Sci Rep ; 8(1): 13106, 2018 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-30166612

RESUMEN

The pervasive role of microRNAs (miRNAs) in cancer pathobiology drives the introduction of new drug development approaches such as miRNA inhibition. In order to advance miRNA-therapeutics, meticulous screening strategies addressing specific tumor targets are needed. Small molecule inhibitors represent an attractive goal for these strategies. In this study, we devised a strategy to screen for small molecule inhibitors that specifically inhibit, directly or indirectly, miR-10b (SMIRs) which is overexpressed in metastatic tumors. We found that the multi-tyrosine kinase inhibitor linifanib could significantly inhibit miR-10b and reverse its oncogenic function in breast cancer and liver cancer both in vitro and in vivo. In addition, we showed that the efficacy of linifanib to inhibit tyrosine kinases was reduced by high miR-10b levels. When the level of miR-10b is high, it can "hijack" the linifanib and reduce its kinase inhibitory effects in cancer resulting in reduced anti-tumor efficacy. In conclusion, our study describes an effective strategy to screen for small molecule inhibitors of miRNAs. We further propose that miR-10b expression levels, due to the newly described "hijacking" effect, may be used as a biomarker to select patients for linifanib treatment.


Asunto(s)
Neoplasias de la Mama , Resistencia a Antineoplásicos , Indazoles/farmacología , Neoplasias Hepáticas , MicroARNs/metabolismo , Compuestos de Fenilurea/farmacología , ARN Neoplásico/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Células MCF-7 , Masculino , Metástasis de la Neoplasia
12.
Nucleic Acids Res ; 33(22): 6961-71, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16377777

RESUMEN

Nucleoside base modifications can alter the structures and dynamics of RNA molecules and are important in tRNAs for maintaining translational fidelity and efficiency. The unmodified anticodon stem-loop from Escherichia coli tRNA(Phe) forms a trinucleotide loop in solution, but Mg2+ and dimethylallyl modification of A37 N6 destabilize the loop-proximal base pairs and increase the mobility of the loop nucleotides. The anticodon arm has three additional modifications, psi32, psi39, and A37 C2-thiomethyl. We have used NMR spectroscopy to investigate the structural and dynamical effects of psi32 on the anticodon stem-loop from E.coli tRNA(Phe). The psi32 modification does not significantly alter the structure of the anticodon stem-loop relative to the unmodified parent molecule. The stem of the RNA molecule includes base pairs psi32-A38 and U33-A37 and the base of psi32 stacks between U33 and A31. The glycosidic bond of psi32 is in the anti configuration and is paired with A38 in a Watson-Crick geometry, unlike residue 32 in most crystal structures of tRNA. The psi32 modification increases the melting temperature of the stem by approximately 3.5 degrees C, although the psi32 and U33 imino resonances are exchange broadened. The results suggest that psi32 functions to preserve the stem integrity in the presence of additional loop modifications or after reorganization of the loop into a translationally functional conformation.


Asunto(s)
Anticodón/química , Escherichia coli/genética , Modelos Moleculares , ARN de Transferencia de Fenilalanina/química , Emparejamiento Base , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico , Seudouridina/química , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , ARN de Transferencia de Fenilalanina/metabolismo , Soluciones
13.
J Mol Biol ; 319(5): 1015-34, 2002 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-12079344

RESUMEN

The modification of RNA nucleotide bases, a fundamental process in all cells, alters the chemical and physical properties of RNA molecules and broadly impacts the physiological properties of cells. tRNA molecules are by far the most diverse-modified RNA species within cells, containing as a group >80% of the known 96 chemically unique nucleic acid modifications. The greatest varieties of modifications are located on residue 37 and play a role in ensuring fidelity and efficiency of protein synthesis. The enzyme dimethylallyl (Delta(2)-isopentenyl) diphosphate:tRNA transferase catalyzes the addition of a dimethylallyl group to the exocyclic amine nitrogen (N6) of A(37) in several tRNA species. Using a 17 residue oligoribonucleotide corresponding to the anticodon arm of Escherichia coli tRNA(Phe), we have investigated the structural and dynamic changes introduced by the dimethylallyl group. The unmodified RNA molecule adopts stem-loop conformation composed of seven base-pairs and a compact three nucleotide loop. This conformation is distinctly different from the U-turn motif that characterizes the anticodon arm in the X-ray crystal structure of the fully modified yeast tRNA(Phe). The adoption of the tri-nucleotide loop by the purine-rich unmodified tRNA(Phe) anticodon arm suggests that other anticodon sequences, especially those containing pyrimidine bases, also may favor a tri-loop conformation. Introduction of the dimethylallyl modification increases the mobility of nucleotides of the loop region but does not dramatically alter the RNA conformation. The dimethylallyl modification may enhance ribosome binding through multiple mechanisms including destabilization of the closed anticodon loop and stabilization of the codon-anticodon helix.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Anticodón/química , Anticodón/metabolismo , Escherichia coli/genética , Conformación de Ácido Nucleico , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/metabolismo , Anticodón/genética , Secuencia de Bases , Enlace de Hidrógeno , Magnesio/farmacología , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico/efectos de los fármacos , Desnaturalización de Ácido Nucleico , Biosíntesis de Proteínas , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia de Fenilalanina/genética , Soluciones , Termodinámica
14.
Wiley Interdiscip Rev RNA ; 5(1): 49-67, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24124096

RESUMEN

RNA hairpins are the most commonly occurring secondary structural elements in RNAs and serve as nucleation sites for RNA folding, RNA-RNA, and RNA-protein interactions. RNA hairpins are frequently capped by tetraloops, and based on sequence similarity, three broad classes of RNA tetraloops have been defined: GNRA, UNCG, and CUYG. Other classes such as the UYUN tetraloop in histone mRNAs, the UGAA in 16S rRNA, the AUUA tetraloop from the MS2 bacteriophage, and the AGNN tetraloop that binds RNase III have also been characterized. The tetraloop structure is compact and is usually characterized by a paired interaction between the first and fourth nucleotides. The two unpaired nucleotides in the loop are usually involved in base-stacking or base-phosphate hydrogen bonding interactions. Several structures of RNA tetraloops, free and complexed to other RNAs or proteins, are now available and these studies have increased our understanding of the diverse mechanisms by which this motif is recognized. RNA tetraloops can mediate RNA-RNA contacts via the tetraloop-receptor motif, kissing hairpin loops, A-minor interactions, and pseudoknots. While these RNA-RNA interactions are fairly well understood, how RNA-binding proteins recognize RNA tetraloops and tetraloop-like motifs remains unclear. In this review, we summarize the structures of RNA tetraloop-protein complexes and the general themes that have emerged on sequence- and structure-specific recognition of RNA tetraloops. We highlight how proteins achieve molecular recognition of this nucleic acid motif, the structural adaptations observed in the tetraloop to accommodate the protein-binding partner, and the role of dynamics in recognition.


Asunto(s)
Proteínas de Unión al ARN/metabolismo , ARN/química , ARN/metabolismo , Animales , Sitios de Unión , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Estructura Secundaria de Proteína , Pliegue del ARN , Proteínas de Unión al ARN/química
15.
FEBS Lett ; 587(21): 3495-9, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24036450

RESUMEN

In Gram-positive bacteria the tRNA-dependent T box riboswitch regulates the expression of many amino acid biosynthetic and aminoacyl-tRNA synthetase genes through a transcription attenuation mechanism. The Specifier domain of the T box riboswitch contains the Specifier sequence that is complementary to the tRNA anticodon and is flanked by a highly conserved purine nucleotide that could result in a fourth base pair involving the invariant U33 of tRNA. We show that the interaction between the T box Specifier domain and tRNA consists of three Watson-Crick base pairs and that U33 confers stability to the complex through intramolecular hydrogen bonding. Enhanced packing within the Specifier domain loop E motif may stabilize the complex and contribute to cognate tRNA selection.


Asunto(s)
Anticodón/química , ARN de Transferencia de Glicerina/química , Riboswitch , Anticodón/metabolismo , Emparejamiento Base , Secuencia de Bases , Enlace de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN de Transferencia de Glicerina/metabolismo , Soluciones
16.
J Mol Biol ; 408(1): 99-117, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21333656

RESUMEN

In Gram-positive bacteria, the RNA transcripts of many amino acid biosynthetic and aminoacyl tRNA synthetase genes contain 5' untranslated regions, or leader RNAs, that function as riboswitches. These T-box riboswitches bind cognate tRNA molecules and regulate gene expression by a transcription attenuation mechanism. The Specifier Loop domain of the leader RNA contains nucleotides that pair with nucleotides in the tRNA anticodon loop and is flanked on one side by a kink-turn (K-turn), or GA, sequence motif. We have determined the solution NMR structure of the K-turn sequence element within the context of the Specifier Loop domain. The K-turn sequence motif has several noncanonical base pairs typical of K-turn structures but adopts an extended conformation. The Specifier Loop domain contains a loop E structural motif, and the single-strand Specifier nucleotides stack with their Watson-Crick edges displaced toward the minor groove. Mg(2+) leads to a significant bending of the helix axis at the base of the Specifier Loop domain, but does not alter the K-turn. Isothermal titration calorimetry indicates that the K-turn sequence causes a small enhancement of the interaction between the tRNA anticodon arm and the Specifier Loop domain. One possibility is that the K-turn structure is formed and stabilized when tRNA binds the T-box riboswitch and interacts with Stem I and the antiterminator helix. This motif in turn anchors the orientation of Stem I relative to the 3' half of the leader RNA, further stabilizing the tRNA-T box complex.


Asunto(s)
Bacillus subtilis/genética , ARN Bacteriano/química , ARN de Transferencia de Tirosina/química , Riboswitch , Tirosina-ARNt Ligasa/genética , Regiones no Traducidas 5' , Emparejamiento Base , Secuencia de Bases , Magnesio/farmacología , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico , ARN Bacteriano/genética , ARN de Transferencia de Tirosina/genética , Transcripción Genética
17.
J Mol Biol ; 412(2): 285-303, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21782828

RESUMEN

tRNA molecules contain 93 chemically unique nucleotide base modifications that expand the chemical and biophysical diversity of RNA and contribute to the overall fitness of the cell. Nucleotide modifications of tRNA confer fidelity and efficiency to translation and are important in tRNA-dependent RNA-mediated regulatory processes. The three-dimensional structure of the anticodon is crucial to tRNA-mRNA specificity, and the diverse modifications of nucleotide bases in the anticodon region modulate this specificity. We have determined the solution structures and thermodynamic properties of Bacillus subtilis tRNA(Tyr) anticodon arms containing the natural base modifications N(6)-dimethylallyl adenine (i(6)A(37)) and pseudouridine (ψ(39)). UV melting and differential scanning calorimetry indicate that the modifications stabilize the stem and may enhance base stacking in the loop. The i(6)A(37) modification disrupts the hydrogen bond network of the unmodified anticodon loop including a C(32)-A(38)(+) base pair and an A(37)-U(33) base-base interaction. Although the i(6)A(37) modification increases the dynamic nature of the loop nucleotides, metal ion coordination reestablishes conformational homogeneity. Interestingly, the i(6)A(37) modification and Mg(2+) are sufficient to promote the U-turn fold of the anticodon loop of Escherichia coli tRNA(Phe), but these elements do not result in this signature feature of the anticodon loop in tRNA(Tyr).


Asunto(s)
Anticodón , Bacillus subtilis/genética , Conformación de Ácido Nucleico , ARN de Transferencia de Tirosina/genética , Rastreo Diferencial de Calorimetría , Enlace de Hidrógeno , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , ARN de Transferencia de Tirosina/química , Termodinámica
18.
J Am Chem Soc ; 128(49): 15570-1, 2006 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-17147349

RESUMEN

The base-base hydrogen bond interactions of the psi32,psi39-modified anticodon arm of Escherichia coli tRNAPhe have been investigated using heteronuclear NMR spectroscopy. psi32 and psi39 were enzymatically introduced into a [13C,15N]-isotopically enriched RNA sequence corresponding to the tRNAPhe anticodon arm. Both the psi32-A38 and A31-psi39 nucleotide pairs form Watson-Crick base pairing schemes and the anticodon nucleotides adopt a triloop conformation. Similar effects were observed previously with D2-isopentenyl modification of the A37 N6 that also is native to the tRNAPhe anticodon arm. These results demonstrate that the individual modifications are not sufficient to produce the 32-38 bifurcated hydrogen bond or the U-turn motifs that are observed in crystal structures of tRNAs and tRNA-protein complexes. Thus the formation of these conserved structural features in solution likely require the synergistic interaction of multiple modifications.


Asunto(s)
Anticodón/química , Emparejamiento Base , Escherichia coli/genética , Transferasas Intramoleculares/metabolismo , Seudouridina/metabolismo , ARN de Transferencia de Fenilalanina/química , Anticodón/genética , Secuencia de Bases , Enlace de Hidrógeno , Transferasas Intramoleculares/genética , Espectroscopía de Resonancia Magnética , Conformación de Ácido Nucleico , Seudouridina/genética , ARN de Transferencia de Fenilalanina/genética , Ribosomas/genética
19.
J Biomol NMR ; 31(3): 231-41, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15803396

RESUMEN

New 3D HCN quantitative J (QJ) pulse schemes are presented for the precise and accurate measurement of one-bond 15N1/9-13C1', 15N1/9-13C6/8, and 15N1/9-13C2/4 residual dipolar couplings (RDCs) in weakly aligned nucleic acids. The methods employ 1H-13C multiple quantum (MQ) coherence or TROSY-type pulse sequences for optimal resolution and sensitivity. RDCs are obtained from the intensity ratio of H1'-C1'-N1/9 (MQ-HCN-QJ) or H6/8-C6/8-N1/9 (TROSY-HCN-QJ) correlations in two interleaved 3D NMR spectra, with dephasing intervals of zero (reference spectrum) and approximately 1/(2J(NC)) (attenuated spectrum). The different types of 15N-13C couplings can be obtained by using either the 3D MQ-HCN-QJ or TROSY-HCN-QJ pulse scheme, with the appropriate setting of the duration of the constant-time 15N evolution period and the offset of two frequency-selective 13C pulses. The methods are demonstrated for a uniformly 13C, 15N-enriched 24-nucleotide stem-loop RNA sequence, helix-35psi, aligned in the magnetic field using phage Pf1. For measurements of RDCs systematic errors are found to be negligible, and experiments performed on a 1.5 mM helix-35psi sample result in an estimated precision of ca. 0.07 Hz for 1D(NC), indicating the utility of the measured RDCs in structure validation and refinement. Indeed, for a complete set of 15N1/9-13C1', 15N1/9-13C6/8, and 15N1/9-13C2/4 dipolar couplings obtained for the stem nucleotides, the measured RDCs are in excellent agreement with those predicted for an NMR structure of helix-35psi, refined using independently measured observables, including 13C-1H, 13C-13C and 1H-1H dipolar couplings.


Asunto(s)
Emparejamiento Base , Resonancia Magnética Nuclear Biomolecular , Ácidos Nucleicos/química , Adenina/química , Bacteriófago Pf1/química , Secuencia de Bases , Isótopos de Carbono , Citidina/química , Deuterio , Escherichia coli/química , Análisis de Fourier , Guanina/química , Isótopos de Nitrógeno , Protones , Teoría Cuántica , ARN Bacteriano/química , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Homología de Secuencia de Ácido Nucleico , Uridina/química
20.
RNA ; 8(1): 83-96, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11871662

RESUMEN

The 3' end of replication-dependent histone mRNAs terminate in a conserved sequence containing a stem-loop. This 26-nt sequence is the binding site for a protein, stem-loop binding protein (SLBP), that is involved in multiple aspects of histone mRNA metabolism and regulation. We have determined the structure of the 26-nt sequence by multidimensional NMR spectroscopy. There is a 16-nt stem-loop motif, with a conserved 6-bp stem and a 4-nt loop. The loop is closed by a conserved U.A base pair that terminates the canonical A-form stem. The pyrimidine-rich 4-nt loop, UUUC, is well organized with the three uridines stacking on the helix, and the fourth base extending across the major groove into the solvent. The flanking nucleotides at the base of the hairpin stem do not assume a unique conformation, despite the fact that the 5' flanking nucleotides are a critical component of the SLBP binding site.


Asunto(s)
Histonas/genética , Proteínas Nucleares , Conformación de Ácido Nucleico , ARN Mensajero/química , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Factores de Escisión y Poliadenilación de ARNm , Secuencia de Bases , Sitios de Unión , Secuencia Conservada , Evolución Molecular , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA