Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Hum Mol Genet ; 25(6): 1116-28, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26769677

RESUMEN

Familial dysautonomia (FD) is an autosomal recessive neurodegenerative disease that affects the development and survival of sensory and autonomic neurons. FD is caused by an mRNA splicing mutation in intron 20 of the IKBKAP gene that results in a tissue-specific skipping of exon 20 and a corresponding reduction of the inhibitor of kappaB kinase complex-associated protein (IKAP), also known as Elongator complex protein 1. To date, several promising therapeutic candidates for FD have been identified that target the underlying mRNA splicing defect, and increase functional IKAP protein. Despite these remarkable advances in drug discovery for FD, we lacked a phenotypic mouse model in which we could manipulate IKBKAP mRNA splicing to evaluate potential efficacy. We have, therefore, engineered a new mouse model that, for the first time, will permit to evaluate the phenotypic effects of splicing modulators and provide a crucial platform for preclinical testing of new therapies. This new mouse model, TgFD9; Ikbkap(Δ20/flox) was created by introducing the complete human IKBKAP transgene with the major FD splice mutation (TgFD9) into a mouse that expresses extremely low levels of endogenous Ikbkap (Ikbkap(Δ20/flox)). The TgFD9; Ikbkap(Δ20/flox) mouse recapitulates many phenotypic features of the human disease, including reduced growth rate, reduced number of fungiform papillae, spinal abnormalities, and sensory and sympathetic impairments, and recreates the same tissue-specific mis-splicing defect seen in FD patients. This is the first mouse model that can be used to evaluate in vivo the therapeutic effect of increasing IKAP levels by correcting the underlying FD splicing defect.


Asunto(s)
Modelos Animales de Enfermedad , Disautonomía Familiar/metabolismo , Disautonomía Familiar/patología , Empalme Alternativo , Animales , Vías Autónomas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Disautonomía Familiar/genética , Exones , Humanos , Péptidos y Proteínas de Señalización Intracelular , Intrones , Masculino , Ratones , Ratones Transgénicos , Mutación , Neuronas/metabolismo , Empalme del ARN/genética , ARN Mensajero/metabolismo , Células Receptoras Sensoriales/metabolismo
2.
J Cell Mol Med ; 14(6B): 1476-84, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19799651

RESUMEN

Cholinergic neurotransmission is essential for many important functions in the brain, including cognitive mechanisms. Here we demonstrate that human embryonic stem (hES) cells differentiate into a population of neuronal cells that express the cholinergic enzyme choline acetyltransferase and homeobox proteins specifying neuronal progenitors of ventral telencephalic lineage. These differentiated cells express transcripts for cholinergic alpha(3), alpha(4) and alpha(7) nicotinic acetylcholine (ACh) receptor subunits and for M1, M2 and M3 muscarinic acetylcholine receptor (mAChR) subtypes. Stimulation with brain-derived neurotrophic factor, neurotrophin-3, ciliary neurotrophic factor and nerve growth factor increases the proportion of cholinergic neurons. These cholinergic receptors also mediate ACh-evoked increase in cytosolic calcium levels, and this response was unaffected by extracellular calcium removal and was abolished by the mAChR antagonist scopolamine. Our findings demonstrate expression of functional cholinergic receptors on hES cell-derived neurons, which may provide a source of expandable cells to facilitate screening of novel cholinergic drugs and useful for evaluating cell transplantation in animal models of cholinergic dysfunction.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Colina/metabolismo , Células Madre Embrionarias/citología , Factores de Crecimiento Nervioso/farmacología , Neuronas/citología , Biomarcadores/metabolismo , Calcio/metabolismo , Agregación Celular/efectos de los fármacos , Línea Celular , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Humanos , Neuroglía/citología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Prosencéfalo/metabolismo , Receptores Colinérgicos/metabolismo , Transmisión Sináptica/efectos de los fármacos
3.
PLoS One ; 5(11): e13890, 2010 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-21085480

RESUMEN

BACKGROUND: Neural crest stem cells (NCSCs) are a transient multipotent embryonic cell population that represents a defining characteristic of vertebrates. The neural crest (NC) gives rise to many derivatives including the neurons and glia of the sensory and autonomic ganglia of the peripheral nervous system, enteric neurons and glia, melanocytes, and the cartilaginous, bony and connective tissue of the craniofacial skeleton, cephalic neuroendocrine organs, and some heart vessels. METHODOLOGY/PRINCIPAL FINDINGS: We present evidence that neural crest (NC) competence can be acquired very early when human embryonic stem cells (hESCs) are selectively neuralized towards dorsal neuroepithelium in the absence of feeder cells in fully defined conditions. When hESC-derived neurospheres are plated on fibronectin, some cells emigrate onto the substrate. These early migratory Neural Crest Stem Cells (emNCSCs) uniformly upregulate Sox10 and vimentin, downregulate N-cadherin, and remodel F-actin, consistent with a transition from neuroepithelium to a mesenchymal NC cell. Over 13% of emNCSCs upregulate CD73, a marker of mesenchymal lineage characteristic of cephalic NC and connexin 43, found on early migratory NC cells. We demonstrated that emNCSCs give rise in vitro to all NC lineages, are multipotent on clonal level, and appropriately respond to developmental factors. We suggest that human emNCSC resemble cephalic NC described in model organisms. Ex vivo emNCSCs can differentiate into neurons in Ret.k(-) mouse embryonic gut tissue cultures and transplanted emNCSCs incorporate into NC-derived structures but not CNS tissues in chick embryos. CONCLUSIONS/SIGNIFICANCE: These findings will provide a framework for further studying early human NC development including the epithelial to mesenchymal transition during NC delamination.


Asunto(s)
Células Madre Embrionarias/metabolismo , Células Madre Multipotentes/metabolismo , Cresta Neural/metabolismo , Células-Madre Neurales/metabolismo , Animales , Diferenciación Celular/genética , Linaje de la Célula , Movimiento Celular/genética , Células Cultivadas , Embrión de Pollo , Análisis por Conglomerados , Células Madre Embrionarias/citología , Transición Epitelial-Mesenquimal/genética , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Mucosa Intestinal/metabolismo , Intestinos/embriología , Ratones , Células Madre Multipotentes/citología , Cresta Neural/citología , Células-Madre Neurales/citología , Análisis de Secuencia por Matrices de Oligonucleótidos , Técnicas de Cultivo de Órganos , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Receptor de Factor de Crecimiento Nervioso/genética , Receptor de Factor de Crecimiento Nervioso/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo
4.
J Neurosci Res ; 85(3): 504-14, 2007 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17203487

RESUMEN

Retinoic acid (RA) and nerve growth factor (NGF) have multiple functions in the regulation of neuronal development. In the present study, we characterized the expression of different nicotinic acetylcholine receptor (nAChR) subtypes in the cholinergic SN56 cell line and investigated the roles of RA and NGF in the expression of choline acetyltransferase (ChAT) and different nAChR subtypes. The nAChR agonist [(3)H]epibatidine was bound to two sites, with apparent affinities of 13 and 380 pM. RT-PCR analysis revealed expression of alpha3, alpha4, alpha5, alpha7, beta2, and beta4 nAChR subunits. RA treatment induced morphological changes, and the mRNA level of ChAT was maximally elevated after 4 days of exposure. The density of [(3)H]epibatidine binding sites and the mRNA and protein level of the alpha3 and beta2 nAChR subunits were also increased by RA-induced differentiation. RA down-regulated the mRNA and protein level of the alpha4 nAChR subunit, whereas no significant change was observed in the mRNA and protein level of the alpha7 nAChR subunit. NGF treatment increased the mRNA and protein level of the alpha3 and beta2 nAChR subunits. No morphological effects of NGF were observed, and the mRNA level of ChAT and mRNA and protein level of the alpha4 and alpha7 nAChR subunits were not significantly altered. Validation was performed with real-time RT-PCR. The present results show that RA and NGF have different effects on the expression of ChAT and the morphology and the expression pattern of different nAChR subunits in cholinergic SN56 cells.


Asunto(s)
Colina O-Acetiltransferasa/genética , Factor de Crecimiento Nervioso/farmacología , Receptores Colinérgicos/genética , Receptores Nicotínicos/genética , Tretinoina/farmacología , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacocinética , Línea Celular , Colina O-Acetiltransferasa/metabolismo , Cartilla de ADN , Regulación de la Expresión Génica/efectos de los fármacos , Cinética , Ratones , Subunidades de Proteína/genética , Piridinas/farmacocinética , Receptores Nicotínicos/efectos de los fármacos
5.
Glia ; 55(4): 385-99, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17152062

RESUMEN

The great potential of human embryonic stem (hES) cells offers the opportunity both for studying basic developmental processes in vitro as well as for drug screening, modeling diseases, or future cell therapy. Defining protocols for the generation of human neural progenies represents a most important prerequisite. Here, we have used six hES cell lines to evaluate defined conditions for neural differentiation in suspension and adherent culture systems. Our protocol does not require fetal serum, feeder cells, or retinoic acid at any step, to induce neural fate decisions in hES cells. We monitored neurogenesis in differentiating cultures using morphological (including on-line follow up), immunocytochemical, and RT-PCR assays. For each hES cell line, in suspension or adherent culture, the same longitudinal progression of neural differentiation occurs. We showed the dynamic transitions from hES cells to neuroepithelial (NE) cells, to radial glial (RG) cells, and to neurons. Thus, 7 days after neural induction the majority of cells were NE, expressing nestin, Sox1, and Pax6. During neural proliferation and differentiation, NE cells transformed in RG cells, which acquired vimentin, BLBP, GLAST, and GFAP, proliferated and formed radial scaffolds. gamma-Aminobutyric acid (GABA)-positive and glutamate positive neurons, few oligodendrocyte progenitors and astrocytes were formed in our conditions and timing. Our system successfully generates human RG cells and could be an effective source for neuronal replacement, since RG cells predominantly generate neurons and provide them with support and guidance.


Asunto(s)
Células Madre Embrionarias/fisiología , Células Epiteliales/fisiología , Neuroglía/fisiología , Adhesión Celular/fisiología , Diferenciación Celular/fisiología , Línea Celular , Medio de Cultivo Libre de Suero , Cartilla de ADN , Humanos , Inmunohistoquímica , Proteínas del Tejido Nervioso/biosíntesis , ARN/biosíntesis , ARN/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
Proc Natl Acad Sci U S A ; 104(30): 12506-11, 2007 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-17640880

RESUMEN

In a previous study, we found that human neural stem cells (HNSCs) exposed to high concentrations of secreted amyloid-precursor protein (sAPP) in vitro differentiated into mainly astrocytes, suggesting that pathological alterations in APP processing during neurodegenerative conditions such as Alzheimer's disease (AD) may prevent neuronal differentiation of HNSCs. Thus, successful neuroplacement therapy for AD may require regulating APP expression to favorable levels to enhance neuronal differentiation of HNSCs. Phenserine, a recently developed cholinesterase inhibitor (ChEI), has been reported to reduce APP levels in vitro and in vivo. In this study, we found reductions of APP and glial fibrillary acidic protein (GFAP) levels in the hippocampus of APP23 mice after 14 days treatment with (+)-phenserine (25 mg/kg) lacking ChEI activity. No significant change in APP gene expression was detected, suggesting that (+)-phenserine decreases APP levels and reactive astrocytes by posttranscription regulation. HNSCs transplanted into (+)-phenserine-treated APP23 mice followed by an additional 7 days of treatment with (+)-phenserine migrated and differentiated into neurons in the hippocampus and cortex after 6 weeks. Moreover, (+)-phenserine significantly increased neuronal differentiation of implanted HNSCs in hippocampal and cortical regions of APP23 mice and in the CA1 region of control mice. These results indicate that (+)-phenserine reduces APP protein in vivo and increases neuronal differentiation of HNSCs. Combination use of HNSC transplantation and treatment with drugs such as (+)-phenserine that modulate APP levels in the brain may be a useful tool for understanding mechanisms regulating stem cell migration and differentiation during neurodegenerative conditions in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Diferenciación Celular/efectos de los fármacos , Neuronas/citología , Fisostigmina/análogos & derivados , Células Madre/citología , Células Madre/efectos de los fármacos , Amiloide/genética , Animales , Células Cultivadas , Regulación de la Expresión Génica , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Ratones , Ratones Transgénicos , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/efectos de los fármacos , Fisostigmina/farmacología , Trasplante de Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA