Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Development ; 149(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35088828

RESUMEN

Regeneration-competent species possess the ability to reverse the progression of severe diseases by restoring the function of the damaged tissue. However, the cellular dynamics underlying this capability remain unexplored. Here, we have used single-cell transcriptomics to map de novo ß-cell regeneration during induction and recovery from diabetes in zebrafish. We show that the zebrafish has evolved two distinct types of somatostatin-producing δ-cells, which we term δ1- and δ2-cells. Moreover, we characterize a small population of glucose-responsive islet cells, which share the hormones and fate-determinants of both ß- and δ1-cells. The transcriptomic analysis of ß-cell regeneration reveals that ß/δ hybrid cells provide a prominent source of insulin expression during diabetes recovery. Using in vivo calcium imaging and cell tracking, we further show that the hybrid cells form de novo and acquire glucose-responsiveness in the course of regeneration. The overexpression of dkk3, a gene enriched in hybrid cells, increases their formation in the absence of ß-cell injury. Finally, interspecies comparison shows that plastic δ1-cells are partially related to PP cells in the human pancreas. Our work provides an atlas of ß-cell regeneration and indicates that the rapid formation of glucose-responsive hybrid cells contributes to the resolution of diabetes in zebrafish.


Asunto(s)
Diabetes Mellitus/metabolismo , Células Secretoras de Insulina/citología , Regeneración , Células Secretoras de Somatostatina/citología , Animales , Calcio/metabolismo , Diabetes Mellitus/patología , Glucosa/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Análisis de la Célula Individual , Células Secretoras de Somatostatina/metabolismo , Pez Cebra
2.
EMBO Rep ; 21(12): e50612, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33140917

RESUMEN

The thyroid gland regulates growth and metabolism via production of thyroid hormone in follicles composed of thyrocytes. So far, thyrocytes have been assumed to be a homogenous population. To uncover heterogeneity in the thyrocyte population and molecularly characterize the non-thyrocyte cells surrounding the follicle, we developed a single-cell transcriptome atlas of the region containing the zebrafish thyroid gland. The 6249-cell atlas includes profiles of thyrocytes, blood vessels, lymphatic vessels, immune cells, and fibroblasts. Further, the thyrocytes show expression heterogeneity, including bimodal expression of the transcription factor pax2a. To validate thyrocyte heterogeneity, we generated a CRISPR/Cas9-based pax2a knock-in line that monitors pax2a expression in the thyrocytes. A population of pax2a-low mature thyrocytes interspersed in individual follicles can be distinguished. We corroborate heterogeneity within the thyrocyte population using RNA sequencing of pax2a-high and pax2a-low thyrocytes, which demonstrates 20% differential expression in transcriptome between the two subpopulations. Our results identify and validate transcriptional differences within the presumed homogenous thyrocyte population.


Asunto(s)
Células Epiteliales Tiroideas , Glándula Tiroides , Animales , Perfilación de la Expresión Génica , Transcriptoma , Pez Cebra/genética
3.
Diabetologia ; 64(4): 850-864, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33492421

RESUMEN

AIMS/HYPOTHESIS: Variants close to the VPS13C/C2CD4A/C2CD4B locus are associated with altered risk of type 2 diabetes in genome-wide association studies. While previous functional work has suggested roles for VPS13C and C2CD4A in disease development, none has explored the role of C2CD4B. METHODS: CRISPR/Cas9-induced global C2cd4b-knockout mice and zebrafish larvae with c2cd4a deletion were used to study the role of this gene in glucose homeostasis. C2 calcium dependent domain containing protein (C2CD)4A and C2CD4B constructs tagged with FLAG or green fluorescent protein were generated to investigate subcellular dynamics using confocal or near-field microscopy and to identify interacting partners by mass spectrometry. RESULTS: Systemic inactivation of C2cd4b in mice led to marked, but highly sexually dimorphic changes in body weight and glucose homeostasis. Female C2cd4b mice displayed unchanged body weight compared with control littermates, but abnormal glucose tolerance (AUC, p = 0.01) and defective in vivo, but not in vitro, insulin secretion (p = 0.02). This was associated with a marked decrease in follicle-stimulating hormone levels as compared with wild-type (WT) littermates (p = 0.003). In sharp contrast, male C2cd4b null mice displayed essentially normal glucose tolerance but an increase in body weight (p < 0.001) and fasting blood glucose (p = 0.003) after maintenance on a high-fat and -sucrose diet vs WT littermates. No metabolic disturbances were observed after global inactivation of C2cd4a in mice, or in pancreatic beta cell function at larval stages in C2cd4a null zebrafish. Fasting blood glucose levels were also unaltered in adult C2cd4a-null fish. C2CD4B and C2CD4A were partially localised to the plasma membrane, with the latter under the control of intracellular Ca2+. Binding partners for both included secretory-granule-localised PTPRN2/phogrin. CONCLUSIONS/INTERPRETATION: Our studies suggest that C2cd4b may act centrally in the pituitary to influence sex-dependent circuits that control pancreatic beta cell function and glucose tolerance in rodents. However, the absence of sexual dimorphism in the impact of diabetes risk variants argues for additional roles for C2CD4A or VPS13C in the control of glucose homeostasis in humans. DATA AVAILABILITY: The datasets generated and/or analysed during the current study are available in the Biorxiv repository ( www.biorxiv.org/content/10.1101/2020.05.18.099200v1 ). RNA-Seq (GSE152576) and proteomics (PXD021597) data have been deposited to GEO ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152576 ) and ProteomeXchange ( www.ebi.ac.uk/pride/archive/projects/PXD021597 ) repositories, respectively.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Tipo 2/genética , Homeostasis/genética , Células Secretoras de Insulina/metabolismo , Proteínas Nucleares/genética , Factores de Transcripción/genética , Animales , Biomarcadores/sangre , Glucemia/genética , Femenino , Hormona Folículo Estimulante/sangre , Genotipo , Humanos , Insulina/sangre , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Hipófisis/metabolismo , Caracteres Sexuales , Aumento de Peso , Pez Cebra/sangre , Pez Cebra/genética , Proteínas de Pez Cebra/sangre , Proteínas de Pez Cebra/genética
4.
Hepatology ; 67(6): 2352-2366, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29266316

RESUMEN

Malformations of the intrahepatic biliary structure cause cholestasis, a liver pathology that corresponds to poor bile flow, which leads to inflammation, fibrosis, and cirrhosis. Although the specification of biliary epithelial cells (BECs) that line the bile ducts is fairly well understood, the molecular mechanisms underlying intrahepatic biliary morphogenesis remain largely unknown. Wnt/ß-catenin signaling plays multiple roles in liver biology; however, its role in intrahepatic biliary morphogenesis remains unclear. Using pharmacological and genetic tools that allow one to manipulate Wnt/ß-catenin signaling, we show that in zebrafish both suppression and overactivation of Wnt/ß-catenin signaling impaired intrahepatic biliary morphogenesis. Hepatocytes, but not BECs, exhibited Wnt/ß-catenin activity; and the global suppression of Wnt/ß-catenin signaling reduced Notch activity in BECs. Hepatocyte-specific suppression of Wnt/ß-catenin signaling also reduced Notch activity in BECs, indicating a cell nonautonomous role for Wnt/ß-catenin signaling in regulating hepatic Notch activity. Reducing Notch activity to the same level as that observed in Wnt-suppressed livers also impaired biliary morphogenesis. Intriguingly, expression of the Notch ligand genes jag1b and jag2b in hepatocytes was reduced in Wnt-suppressed livers and enhanced in Wnt-overactivated livers, revealing their regulation by Wnt/ß-catenin signaling. Importantly, restoring Notch activity rescued the biliary defects observed in Wnt-suppressed livers. CONCLUSION: Wnt/ß-catenin signaling cell nonautonomously controls Notch activity in BECs by regulating the expression of Notch ligand genes in hepatocytes, thereby regulating biliary morphogenesis. (Hepatology 2018;67:2352-2366).


Asunto(s)
Conductos Biliares Intrahepáticos/crecimiento & desarrollo , Morfogénesis , Receptores Notch/fisiología , Vía de Señalización Wnt/fisiología , Animales , Pez Cebra
5.
Hepatology ; 66(5): 1616-1630, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28599080

RESUMEN

Upon mild liver injury, new hepatocytes originate from preexisting hepatocytes. However, if hepatocyte proliferation is impaired, a manifestation of severe liver injury, biliary epithelial cells (BECs) contribute to new hepatocytes through BEC dedifferentiation into liver progenitor cells (LPCs), also termed oval cells or hepatoblast-like cells (HB-LCs), and subsequent differentiation into hepatocytes. Despite the identification of several factors regulating BEC dedifferentiation and activation, little is known about factors involved in the regulation of LPC differentiation into hepatocytes during liver regeneration. Using a zebrafish model of near-complete hepatocyte ablation, we show that bone morphogenetic protein (Bmp) signaling is required for BEC conversion to hepatocytes, particularly for LPC differentiation into hepatocytes. We found that severe liver injury led to the up-regulation of genes involved in Bmp signaling, including smad5, tbx2b, and id2a, in the liver. Bmp suppression did not block BEC dedifferentiation into HB-LCs; however, the differentiation of HB-LCs into hepatocytes was impaired due to the maintenance of HB-LCs in an undifferentiated state. Later Bmp suppression did not affect HB-LC differentiation but increased BEC number through proliferation. Notably, smad5, tbx2b, and id2a mutants exhibited similar liver regeneration defects as those observed in Bmp-suppressed livers. Moreover, BMP2 addition promoted the differentiation of a murine LPC line into hepatocytes in vitro. CONCLUSIONS: Bmp signaling regulates BEC-driven liver regeneration through smad5, tbx2b, and id2a: it regulates HB-LC differentiation into hepatocytes through tbx2b and BEC proliferation through id2a; our findings provide insights into promoting innate liver regeneration as a novel therapy. (Hepatology 2017;66:1616-1630).


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Proteína 2 Inhibidora de la Diferenciación/metabolismo , Regeneración Hepática , Proteínas de Dominio T Box/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Proliferación Celular , Hepatocitos/citología , Pez Cebra
6.
Gastroenterology ; 146(3): 776-88, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24148620

RESUMEN

BACKGROUND & AIMS: Biliary epithelial cells (BECs) are considered to be a source of regenerating hepatocytes when hepatocyte proliferation is compromised. However, there is still controversy about the extent to which BECs can contribute to the regenerating hepatocyte population, and thereby to liver recovery. To investigate this issue, we established a zebrafish model of liver regeneration in which the extent of hepatocyte ablation can be controlled. METHODS: Hepatocytes were depleted by administration of metronidazole to Tg(fabp10a:CFP-NTR) animals. We traced the origin of regenerating hepatocytes using short-term lineage-tracing experiments, as well as the inducible Cre/loxP system; specifically, we utilized both a BEC tracer line Tg(Tp1:CreER(T2)) and a hepatocyte tracer line Tg(fabp10a:CreER(T2)). We also examined BEC and hepatocyte proliferation and liver marker gene expression during liver regeneration. RESULTS: BECs gave rise to most of the regenerating hepatocytes in larval and adult zebrafish after severe hepatocyte depletion. After hepatocyte loss, BECs proliferated as they dedifferentiated into hepatoblast-like cells; they subsequently differentiated into highly proliferative hepatocytes that restored the liver mass. This process was impaired in zebrafish wnt2bb mutants; in these animals, hepatocytes regenerated but their proliferation was greatly reduced. CONCLUSIONS: BECs contribute to regenerating hepatocytes after substantial hepatocyte depletion in zebrafish, thereby leading to recovery from severe liver damage.


Asunto(s)
Sistema Biliar/citología , Proliferación Celular , Células Epiteliales/citología , Hepatocitos/citología , Regeneración Hepática/fisiología , Hígado/citología , Pez Cebra/fisiología , Técnicas de Ablación , Animales , Muerte Celular/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/fisiología , Metronidazol/farmacología , Modelos Animales , Mutación/genética , Proteínas Wnt/genética
7.
Development ; 139(9): 1557-67, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22492351

RESUMEN

Genetic studies have implicated Notch signaling in the maintenance of pancreatic progenitors. However, how Notch signaling regulates the quiescent, proliferative or differentiation behaviors of pancreatic progenitors at the single-cell level remains unclear. Here, using single-cell genetic analyses and a new transgenic system that allows dynamic assessment of Notch signaling, we address how discrete levels of Notch signaling regulate the behavior of endocrine progenitors in the zebrafish intrapancreatic duct. We find that these progenitors experience different levels of Notch signaling, which in turn regulate distinct cellular outcomes. High levels of Notch signaling induce quiescence, whereas lower levels promote progenitor amplification. The sustained downregulation of Notch signaling triggers a multistep process that includes cell cycle entry and progenitor amplification prior to endocrine differentiation. Importantly, progenitor amplification and differentiation can be uncoupled by modulating the duration and/or extent of Notch signaling downregulation, indicating that these processes are triggered by distinct levels of Notch signaling. These data show that different levels of Notch signaling drive distinct behaviors in a progenitor population.


Asunto(s)
Diferenciación Celular/fisiología , Islotes Pancreáticos/citología , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Células Madre/fisiología , Pez Cebra/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Proliferación Celular , Técnica del Anticuerpo Fluorescente , Larva/metabolismo , Larva/fisiología , Pez Cebra/metabolismo
8.
PLoS Genet ; 8(6): e1002754, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22719264

RESUMEN

The pancreaticobiliary ductal system connects the liver and pancreas to the intestine. It is composed of the hepatopancreatic ductal (HPD) system as well as the intrahepatic biliary ducts and the intrapancreatic ducts. Despite its physiological importance, the development of the pancreaticobiliary ductal system remains poorly understood. The SRY-related transcription factor SOX9 is expressed in the mammalian pancreaticobiliary ductal system, but the perinatal lethality of Sox9 heterozygous mice makes loss-of-function analyses challenging. We turned to the zebrafish to assess the role of SOX9 in pancreaticobiliary ductal system development. We first show that zebrafish sox9b recapitulates the expression pattern of mouse Sox9 in the pancreaticobiliary ductal system and use a nonsense allele of sox9b, sox9b(fh313), to dissect its function in the morphogenesis of this structure. Strikingly, sox9b(fh313) homozygous mutants survive to adulthood and exhibit cholestasis associated with hepatic and pancreatic duct proliferation, cyst formation, and fibrosis. Analysis of sox9b(fh313) mutant embryos and larvae reveals that the HPD cells appear to mis-differentiate towards hepatic and/or pancreatic fates, resulting in a dysmorphic structure. The intrahepatic biliary cells are specified but fail to assemble into a functional network. Similarly, intrapancreatic duct formation is severely impaired in sox9b(fh313) mutants, while the embryonic endocrine and acinar compartments appear unaffected. The defects in the intrahepatic and intrapancreatic ducts of sox9b(fh313) mutants worsen during larval and juvenile stages, prompting the adult phenotype. We further show that Sox9b interacts with Notch signaling to regulate intrahepatic biliary network formation: sox9b expression is positively regulated by Notch signaling, while Sox9b function is required to maintain Notch signaling in the intrahepatic biliary cells. Together, these data reveal key roles for SOX9 in the morphogenesis of the pancreaticobiliary ductal system, and they cast human Sox9 as a candidate gene for pancreaticobiliary duct malformation-related pathologies.


Asunto(s)
Conductos Biliares Intrahepáticos/crecimiento & desarrollo , Hígado/crecimiento & desarrollo , Páncreas/crecimiento & desarrollo , Factor de Transcripción SOX9/genética , Proteínas de Pez Cebra/genética , Pez Cebra , Animales , Conductos Biliares Intrahepáticos/embriología , Conductos Biliares Intrahepáticos/metabolismo , Codón sin Sentido , Regulación del Desarrollo de la Expresión Génica , Hígado/embriología , Hígado/metabolismo , Morfogénesis/genética , Páncreas/embriología , Páncreas/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Factor de Transcripción SOX9/metabolismo , Transducción de Señal , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
9.
Sci Adv ; 10(26): eado4513, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38924394

RESUMEN

Coordination of cellular activity through Ca2+ enables ß cells to secrete precise quantities of insulin. To explore how the Ca2+ response is orchestrated in space and time, we implement optogenetic systems to probe the role of individual ß cells in the glucose response. By targeted ß cell activation/inactivation in zebrafish, we reveal a hierarchy of cells, each with a different level of influence over islet-wide Ca2+ dynamics. First-responder ß cells lie at the top of the hierarchy, essential for initiating the first-phase Ca2+ response. Silencing first responders impairs the Ca2+ response to glucose. Conversely, selective activation of first responders demonstrates their increased capability to raise pan-islet Ca2+ levels compared to followers. By photolabeling and transcriptionally profiling ß cells that differ in their thresholds to a glucose-stimulated Ca2+ response, we highlight vitamin B6 production as a signature pathway of first responders. We further define an evolutionarily conserved requirement for vitamin B6 in enabling the Ca2+ response to glucose in mammalian systems.


Asunto(s)
Calcio , Glucosa , Células Secretoras de Insulina , Optogenética , Pez Cebra , Animales , Células Secretoras de Insulina/metabolismo , Glucosa/metabolismo , Calcio/metabolismo , Señalización del Calcio
10.
PLoS Biol ; 7(4): e1000079, 2009 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-19355788

RESUMEN

Regulation of cell proliferation has been extensively studied in cultured cell systems that are characterized by coordinated growth and cell-cycle progression and relatively uniform cell size distribution. During the development of multicellular organisms, however, growth and division can be temporally uncoupled, and the signaling pathways that regulate these growth programs are poorly understood. A good model for analyzing proliferation control in such systems is the morphogenesis of the Drosophila adult abdominal epidermis by histoblasts. These cells undergo a series of temporally regulated transitions during which neither cell size nor division rate is constant. The proliferation of histoblasts during metamorphosis is uniquely amenable to clonal analysis in combination with live imaging. Thereby, we show that abdominal histoblasts, which grow while in G2 arrest during larval stages, enter a proliferative stage in the pupal period that is initiated by ecdysone-dependent string/Cdc25 phosphatase transcription. The proliferating histoblasts have preaccumulated stores of Cyclin E, which trigger an immediate S phase onset after mitosis. These rapid cell cycles lack a G1 phase and result in a progressive reduction of cell size. Eventually, the histoblasts proceed to a stage of slower proliferation that, in contrast to the preceding, depends on epidermal growth factor receptor (EGFR) signaling for progression through the G2/M transition and on insulin receptor/PI3K-mediated signaling for growth. These results uncover the developmentally programmed changes coupling the growth and proliferation of the histoblasts that form the abdominal epidermis of Drosophila. Histoblasts proceed through three distinct stages: growth without division, division without growth, and growth-coupled proliferation. Our identification of the signaling pathways and cell-cycle regulators that control these programs illustrates the power of in vivo time-lapse analyses after clone induction. It sets the stage for the comprehensive understanding of the coordination of cell growth and cell-cycle progression in complex multicellular eukaryotes.


Asunto(s)
Proliferación Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Ecdisona/metabolismo , Receptores ErbB/metabolismo , Morfogénesis/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Abdomen/crecimiento & desarrollo , Animales , Ciclo Celular/genética , Ciclo Celular/fisiología , División Celular/fisiología , Tamaño de la Célula , Ciclina E/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Ecdisona/genética , Células Epidérmicas , Epidermis/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Larva , Pupa , Receptor de Insulina/metabolismo , Transducción de Señal/fisiología , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo
11.
Nat Commun ; 13(1): 6255, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271049

RESUMEN

Diabetes is a multifactorial disorder characterized by loss or dysfunction of pancreatic ß-cells. ß-cells are heterogeneous, exhibiting different glucose sensing, insulin secretion and gene expression. They communicate with other endocrine cell types via paracrine signals and between ß-cells via gap junctions. Here, we identify the importance of signaling between ß-cells via the extracellular signal WNT4. We show heterogeneity in Wnt4 expression, most strikingly in the postnatal maturation period, Wnt4-positive cells, being more mature while Wnt4-negative cells are more proliferative. Knock-out in adult ß-cells shows that WNT4 controls the activation of calcium signaling in response to a glucose challenge, as well as metabolic pathways converging to lower ATP/ADP ratios, thereby reducing insulin secretion. These results reveal that paracrine signaling between ß-cells is important in addition to gap junctions in controling insulin secretion. Together with previous reports of WNT4 up-regulation in obesity our observations suggest an adaptive insulin response coordinating ß-cells.


Asunto(s)
Señalización del Calcio , Insulinas , Glucosa/metabolismo , Adenosina Trifosfato/metabolismo , Insulinas/metabolismo , Adenosina Difosfato/metabolismo
12.
Hepatol Commun ; 6(11): 3083-3097, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36017776

RESUMEN

Hepatic cysts are fluid-filled lesions in the liver that are estimated to occur in 5% of the population. They may cause hepatomegaly and abdominal pain. Progression to secondary fibrosis, cirrhosis, or cholangiocarcinoma can lead to morbidity and mortality. Previous studies of patients and rodent models have associated hepatic cyst formation with increased proliferation and fluid secretion in cholangiocytes, which are partially due to impaired primary cilia. Congenital hepatic cysts are thought to originate from faulty bile duct development, but the underlying mechanisms are not fully understood. In a forward genetic screen, we identified a zebrafish mutant that developed hepatic cysts during larval stages. The cyst formation was not due to changes in biliary cell proliferation, bile secretion, or impairment of primary cilia. Instead, time-lapse live imaging data showed that the mutant biliary cells failed to form interconnecting bile ducts because of defects in motility and protrusive activity. Accordingly, immunostaining revealed a disorganized actin and microtubule cytoskeleton in the mutant biliary cells. By whole-genome sequencing, we determined that the cystic phenotype in the mutant was caused by a missense mutation in the furinb gene, which encodes a proprotein convertase. The mutation altered Furinb localization and caused endoplasmic reticulum (ER) stress. The cystic phenotype could be suppressed by treatment with the ER stress inhibitor 4-phenylbutyric acid and exacerbated by treatment with the ER stress inducer tunicamycin. The mutant liver also exhibited increased mammalian target of rapamycin (mTOR) signaling. Treatment with mTOR inhibitors halted cyst formation at least partially through reducing ER stress. Conclusion: Our study has established a vertebrate model for studying hepatic cystogenesis and illustrated the contribution of ER stress in the disease pathogenesis.


Asunto(s)
Quistes , Pez Cebra , Animales , Pez Cebra/genética , Proproteína Convertasas/genética , Mutación Missense/genética , Tunicamicina , Actinas/genética , Modelos Animales de Enfermedad , Hígado/patología , Quistes/genética , Serina-Treonina Quinasas TOR/genética , Mamíferos
13.
J Vis Exp ; (175)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34633379

RESUMEN

The pancreatic ß-cells sustain systemic glucose homeostasis by producing and secreting insulin according to the blood glucose levels. Defects in ß-cell function are associated with hyperglycemia that can lead to diabetes. During the process of insulin secretion, ß-cells experience an influx of Ca2+. Thus, imaging the glucose-stimulated Ca2+ influx using genetically encoded calcium indicators (GECIs) provides an avenue to studying ß-cell function. Previously, studies showed that isolated zebrafish islets expressing GCaMP6s exhibit significant Ca2+ activity upon stimulation with defined glucose concentrations. However, it is paramount to study how ß-cells respond to glucose not in isolation, but in their native environment, where they are systemically connected, vascularized, and densely innervated. To this end, the study leveraged the optical transparency of the zebrafish larvae at early stages of development to illuminate ß-cell activity in vivo. Here, a detailed protocol for Ca2+ imaging and glucose stimulation to investigate ß-cell function in vivo is presented. This technique allows to monitor the coordinated Ca2+ dynamics in ß-cells with single-cell resolution. Additionally, this method can be applied to work with any injectable solution such as small molecules or peptides. Altogether, the protocol illustrates the potential of the zebrafish model to investigate islet coordination in vivo and to characterize how environmental and genetic components might affect ß-cell function.


Asunto(s)
Calcio , Células Secretoras de Insulina , Animales , Calcio/metabolismo , Glucosa/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Pez Cebra/metabolismo
14.
Methods Mol Biol ; 2128: 159-179, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32180193

RESUMEN

During embryogenesis, beta-cells arise from the dorsal and ventral bud originating in the endoderm germ layer. As the animal develops to adulthood, the beta-cell mass dramatically increases. The expansion of the beta-cell population is driven by cell division among the embryonic beta-cells and supplanted by neogenesis from post-embryonic progenitors. Here, we describe a protocol for multicolor clonal analysis in zebrafish to define the contribution of individual embryonic beta-cells to the increase in cell numbers. This technique provides insights into the proliferative history of individual beta-cells in an islet. This insight helps in defining the replicative heterogeneity among individual beta-cells during development. Additionally, the ability to discriminate individual cells based on unique color signatures helps quantify the volume occupied by beta-cells and define the contribution of cellular size to the beta-cell mass.


Asunto(s)
Proliferación Celular , Rastreo Celular/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Células Secretoras de Insulina/citología , Microscopía Confocal/métodos , Coloración y Etiquetado/métodos , Animales , Animales Modificados Genéticamente , Linaje de la Célula , Clonación Molecular/métodos , Color , Genes Reporteros , Células Secretoras de Insulina/química , Integrasas , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Modelos Animales , Pez Cebra
15.
Front Cell Dev Biol ; 7: 15, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30873407

RESUMEN

In the past years, evidence has emerged that hallmarks of human metabolic disorders can be recapitulated in zebrafish using genetic, pharmacological or dietary interventions. An advantage of modeling metabolic diseases in zebrafish compared to other "lower organisms" is the presence of a vertebrate body plan providing the possibility to study the tissue-intrinsic processes preceding the loss of metabolic homeostasis. While the small size of zebrafish is advantageous in many aspects, it also has shortcomings such as the difficulty to obtain sufficient amounts for biochemical analyses in response to metabolic challenges. A workshop at the European Zebrafish Principal Investigator meeting in Trento, Italy, was dedicated to discuss the advantages and disadvantages of zebrafish to study metabolic disorders. This perspective article by the participants highlights strategies to achieve improved tissue-resolution for read-outs using "nano-sampling" approaches for metabolomics as well as live imaging of zebrafish expressing fluorescent reporter tools that inform on cellular or subcellular metabolic processes. We provide several examples, including the use of reporter tools to study the heterogeneity of pancreatic beta-cells within their tissue environment. While limitations exist, we believe that with the advent of new technologies and more labs developing methods that can be applied to minimal amounts of tissue or single cells, zebrafish will further increase their utility to study energy metabolism.

16.
Dis Model Mech ; 12(1)2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30679186

RESUMEN

Islet inflammation and cytokine production are implicated in pancreatic ß-cell dysfunction and diabetes pathogenesis. However, we lack therapeutics to protect the insulin-producing ß-cells from inflammatory damage. Closing this clinical gap requires the establishment of new disease models of islet inflammation to facilitate screening efforts aimed at identifying new protective agents. Here, we have developed a genetic model of Interleukin-1ß (Il-1ß)-driven islet inflammation in zebrafish, a vertebrate that allows for non-invasive imaging of ß-cells and in vivo drug discovery. Live imaging of immune cells and ß-cells in our model revealed dynamic migration, increased visitation and prolonged macrophage retention in the islet, together with robust activation of NF-κB signalling in ß-cells. We find that Il-1ß-mediated inflammation does not cause ß-cell destruction but, rather, it impairs ß-cell function and identity. In vivo, ß-cells exhibit impaired glucose-stimulated calcium influx and reduced expression of genes involved in function and maturity. These defects are accompanied by α-cell expansion, glucose intolerance and hyperglycemia following a glucose challenge. Notably, we show that a medicinal plant derivative (wedelolactone) is capable of reducing the immune-cell infiltration while also ameliorating the hyperglycemic phenotype of our model. Importantly, these anti-diabetic properties in zebrafish are predictive of wedelolactone's efficacy in protecting rodent and human islets from cytokine-induced apoptosis. In summary, this new zebrafish model of diabetes opens a window to study the interactions between immune and ß-cells in vivo, while also allowing the identification of therapeutic agents for protecting ß-cells from inflammation.


Asunto(s)
Productos Biológicos/farmacología , Cumarinas/farmacología , Inflamación/patología , Células Secretoras de Insulina/patología , Animales , Animales Modificados Genéticamente , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Citocinas/farmacología , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Glucosa/farmacología , Humanos , Hiperglucemia/genética , Hiperglucemia/patología , Inflamación/metabolismo , Células Secretoras de Insulina/metabolismo , Interleucina-1beta/metabolismo , Larva/efectos de los fármacos , Larva/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Modelos Genéticos , Imagen de Lapso de Tiempo , Transcripción Genética/efectos de los fármacos , Pez Cebra
17.
Nat Metab ; 1(6): 615-629, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-32694805

RESUMEN

Pancreatic ß-cells form highly connected networks within isolated islets. Whether this behaviour pertains to the situation in vivo, after innervation and during continuous perfusion with blood, is unclear. In the present study, we used the recombinant Ca2+ sensor GCaMP6 to assess glucose-regulated connectivity in living zebrafish Danio rerio, and in murine or human islets transplanted into the anterior eye chamber. In each setting, Ca2+ waves emanated from temporally defined leader ß-cells, and three-dimensional connectivity across the islet increased with glucose stimulation. Photoablation of zebrafish leader cells disrupted pan-islet signalling, identifying these as likely pacemakers. Correspondingly, in engrafted mouse islets, connectivity was sustained during prolonged glucose exposure, and super-connected 'hub' cells were identified. Granger causality analysis revealed a controlling role for temporally defined leaders, and transcriptomic analyses revealed a discrete hub cell fingerprint. We thus define a population of regulatory ß-cells within coordinated islet networks in vivo. This population may drive Ca2+ dynamics and pulsatile insulin secretion.


Asunto(s)
Calcio/metabolismo , Células Secretoras de Insulina/metabolismo , Animales , Glucosa/metabolismo , Técnicas In Vitro , Insulina/metabolismo , Transducción de Señal , Pez Cebra/metabolismo
18.
Int J Dev Biol ; 62(6-7-8): 453-464, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29938757

RESUMEN

On 11 January 1922 insulin injection was used for the first time in the treatment of diabetes. Even today, daily insulin injections are the life-saving treatment for patients with Type 1 diabetes and advanced Type 2 diabetes. However, insulin injections often fail to achieve full glucose control, which in the long-term leads to multiple complications and mortality. Beta-cells, the natural producers and secretors of insulin, remain the gold-standard in regulating blood glucose levels. In this review, we focus on three strategies aiming at counteracting beta-cell loss in order to gain insulin independence: replacement, replication and protection. The three approaches, together termed as the triumvirate of beta-cell regeneration, may constitute the basis for a future cure for diabetes.


Asunto(s)
Diabetes Mellitus/fisiopatología , Secreción de Insulina/fisiología , Células Secretoras de Insulina/fisiología , Regeneración/fisiología , Animales , Proliferación Celular/fisiología , Citoprotección/efectos de los fármacos , Diabetes Mellitus/metabolismo , Diabetes Mellitus/terapia , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Trasplante de Islotes Pancreáticos/métodos , Bibliotecas de Moléculas Pequeñas/farmacología
19.
J Vis Exp ; (137)2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-30035763

RESUMEN

Pancreatic beta-cells respond to increasing blood glucose concentrations by secreting the hormone insulin. The dysfunction of beta-cells leads to hyperglycemia and severe, life-threatening consequences. Understanding how the beta-cells operate under physiological conditions and what genetic and environmental factors might cause their dysfunction could lead to better treatment options for diabetic patients. The ability to measure calcium levels in beta-cells serves as an important indicator of beta-cell function, as the influx of calcium ions triggers insulin release. Here we describe a protocol for monitoring the glucose-stimulated calcium influx in zebrafish beta-cells by using GCaMP6s, a genetically encoded sensor of calcium. The method allows monitoring the intracellular calcium dynamics with single-cell resolution in ex vivo mounted islets. The glucose-responsiveness of beta-cells within the same islet can be captured simultaneously under different glucose concentrations, which suggests the presence of functional heterogeneity among zebrafish beta-cells. Furthermore, the technique provides high temporal and spatial resolution, which reveals the oscillatory nature of the calcium influx upon glucose stimulation. Our approach opens the doors to use the zebrafish as a model to investigate the contribution of genetic and environmental factors to beta-cell function and dysfunction.


Asunto(s)
Calcio/química , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Animales , Pez Cebra
20.
Nat Biotechnol ; 36(5): 469-473, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29644996

RESUMEN

A key goal of developmental biology is to understand how a single cell is transformed into a full-grown organism comprising many different cell types. Single-cell RNA-sequencing (scRNA-seq) is commonly used to identify cell types in a tissue or organ. However, organizing the resulting taxonomy of cell types into lineage trees to understand the developmental origin of cells remains challenging. Here we present LINNAEUS (lineage tracing by nuclease-activated editing of ubiquitous sequences)-a strategy for simultaneous lineage tracing and transcriptome profiling in thousands of single cells. By combining scRNA-seq with computational analysis of lineage barcodes, generated by genome editing of transgenic reporter genes, we reconstruct developmental lineage trees in zebrafish larvae, and in heart, liver, pancreas, and telencephalon of adult fish. LINNAEUS provides a systematic approach for tracing the origin of novel cell types, or known cell types under different conditions.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica , Transcriptoma/genética , Pez Cebra/genética , Animales , Linaje de la Célula/genética , Rastreo Celular/métodos , Biología Computacional/métodos , Ingeniería Genética , Corazón/crecimiento & desarrollo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Páncreas/crecimiento & desarrollo , Páncreas/metabolismo , Análisis de la Célula Individual/métodos , Telencéfalo/crecimiento & desarrollo , Telencéfalo/metabolismo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA