Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Trends Genet ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38724328

RESUMEN

Positive-strand RNA [(+)RNA] viruses include pandemic SARS-CoV-2, tumor-inducing hepatitis C virus, debilitating chikungunya virus (CHIKV), lethal encephalitis viruses, and many other major pathogens. (+)RNA viruses replicate their RNA genomes in virus-induced replication organelles (ROs) that also evolve new viral species and variants by recombination and mutation and are crucial virus control targets. Recent cryo-electron microscopy (cryo-EM) reveals that viral RNA replication proteins form striking ringed 'crowns' at RO vesicle junctions with the cytosol. These crowns direct RO vesicle formation, viral (-)RNA and (+)RNA synthesis and capping, innate immune escape, and transfer of progeny (+)RNA genomes into translation and encapsidation. Ongoing studies are illuminating crown assembly, sequential functions, host factor interactions, etc., with significant implications for control and beneficial uses of viruses.

2.
Proc Natl Acad Sci U S A ; 119(14): e2122174119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35344424

RESUMEN

Replication-dependent (RD) histones are deposited onto human cytomegalovirus (HCMV) genomes at the start of infection. We examined how HCMV affects the de novo production of RD histones and found that viral infection blocked the accumulation of RD histone mRNAs that normally occurs during the S phase. Furthermore, RD histone mRNAs present in HCMV-infected cells did not undergo the unique 3' processing required for their normal nuclear export and translation. The protein that orchestrates processing in the nucleus, stem loop­binding protein (SLBP), was found predominantly in the cytoplasm, and RD histone proteins were not de novo synthesized in HCMV-infected cells. Intriguingly, however, we found that SLBP was required for the efficient synthesis and assembly of infectious progeny virions. We conclude that HCMV infection attenuates RD histone mRNA accumulation and processing and the de novo protein synthesis of the RD histones, while utilizing SLBP for an alternative purpose to support infectious virion production.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Histonas , Replicación Viral , División Celular , Citomegalovirus/genética , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/virología , Replicación del ADN , Histonas/metabolismo , Humanos
3.
Mol Cell ; 39(2): 282-91, 2010 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-20605502

RESUMEN

RNA-induced silencing complexes (RISCs) play central roles in posttranscriptional gene silencing. In plants, the mechanism of RISC assembly has remained elusive due to the lack of cell-free systems that recapitulate the process. In this report, we demonstrate that plant AGO1 protein synthesized by in vitro translation using an extract of evacuolated tobacco protoplasts incorporates synthetic small interfering RNA (siRNA) and microRNA (miRNA) duplexes to form RISCs that sequester the single-stranded siRNA guide strand and miRNA strand, respectively. The formed RISCs were able to recognize and cleave the complementary target RNAs. In this system, the siRNA duplex was incorporated into HSP90-bound AGO1, and subsequent removal of the passenger strand was triggered by ATP hydrolysis by HSP90. Removal of the siRNA passenger strand required the ribonuclease activity of AGO1, while that of the miRNA star strand did not. Based on these results, the mechanism of plant RISC formation is discussed.


Asunto(s)
Factores Eucarióticos de Iniciación/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Complejos Multiproteicos/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Secuencia de Bases , Sistema Libre de Células/metabolismo , Factores Eucarióticos de Iniciación/genética , Silenciador del Gen/fisiología , Proteínas HSP90 de Choque Térmico/genética , MicroARNs/genética , MicroARNs/metabolismo , Datos de Secuencia Molecular , Complejos Multiproteicos/genética , Proteínas de Plantas/genética , Protoplastos/citología , Protoplastos/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Complejo Silenciador Inducido por ARN/genética , Nicotiana/citología , Nicotiana/genética
5.
J Virol ; 86(14): 7565-76, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22573863

RESUMEN

The genomes of the Tomato mosaic virus and many other plant and animal positive-strand RNA viruses of agronomic and medical importance encode superfamily 1 helicases. Although helicases play important roles in viral replication, the crystal structures of viral superfamily 1 helicases have not been determined. Here, we report the crystal structure of a fragment (S666 to Q1116) of the replication protein from Tomato mosaic virus. The structure reveals a novel N-terminal domain tightly associated with a helicase core. The helicase core contains two RecA-like α/ß domains without any of the accessory domain insertions that are found in other superfamily 1 helicases. The N-terminal domain contains a flexible loop, a long α-helix, and an antiparallel six-stranded ß-sheet. On the basis of the structure, we constructed deletion mutants of the S666-to-Q1116 fragment and performed split-ubiquitin-based interaction assays in Saccharomyces cerevisiae with TOM1 and ARL8, host proteins that are essential for tomato mosaic virus RNA replication. The results suggested that both TOM1 and ARL8 interact with the long α-helix in the N-terminal domain and that TOM1 also interacts with the helicase core. Prediction of secondary structures in other viral superfamily 1 helicases and comparison of those structures with the S666-to-Q1116 structure suggested that these helicases have a similar fold. Our results provide a structural basis of viral superfamily 1 helicases.


Asunto(s)
ARN Helicasas/química , Tobamovirus/enzimología , Secuencia de Aminoácidos , Sitios de Unión , GTP Fosfohidrolasas/química , Modelos Moleculares , Mutación , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN Helicasas/genética , ARN Helicasas/metabolismo , Saccharomyces cerevisiae/virología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Eliminación de Secuencia , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
6.
PLoS Pathog ; 7(12): e1002409, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22174675

RESUMEN

Tomato mosaic virus (ToMV), like other eukaryotic positive-strand RNA viruses, replicates its genomic RNA in replication complexes formed on intracellular membranes. Previous studies showed that a host seven-pass transmembrane protein TOM1 is necessary for efficient ToMV multiplication. Here, we show that a small GTP-binding protein ARL8, along with TOM1, is co-purified with a FLAG epitope-tagged ToMV 180K replication protein from solubilized membranes of ToMV-infected tobacco (Nicotiana tabacum) cells. When solubilized membranes of ToMV-infected tobacco cells that expressed FLAG-tagged ARL8 were subjected to immunopurification with anti-FLAG antibody, ToMV 130K and 180K replication proteins and TOM1 were co-purified and the purified fraction showed RNA-dependent RNA polymerase activity that transcribed ToMV RNA. From uninfected cells, TOM1 co-purified with FLAG-tagged ARL8 less efficiently, suggesting that a complex containing ToMV replication proteins, TOM1, and ARL8 are formed on membranes in infected cells. In Arabidopsis thaliana, ARL8 consists of four family members. Simultaneous mutations in two specific ARL8 genes completely inhibited tobamovirus multiplication. In an in vitro ToMV RNA translation-replication system, the lack of either TOM1 or ARL8 proteins inhibited the production of replicative-form RNA, indicating that TOM1 and ARL8 are required for efficient negative-strand RNA synthesis. When ToMV 130K protein was co-expressed with TOM1 and ARL8 in yeast, RNA 5'-capping activity was detected in the membrane fraction. This activity was undetectable or very weak when the 130K protein was expressed alone or with either TOM1 or ARL8. Taken together, these results suggest that TOM1 and ARL8 are components of ToMV RNA replication complexes and play crucial roles in a process toward activation of the replication proteins' RNA synthesizing and capping functions.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Interacciones Huésped-Parásitos/genética , Nicotiana/virología , Proteínas de Plantas/metabolismo , Virus del Mosaico del Tabaco/metabolismo , Proteínas Virales/metabolismo , Línea Celular , Cromatografía Liquida , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masas en Tándem , Proteínas Virales/genética , Replicación Viral/genética
7.
Protein Expr Purif ; 81(1): 89-95, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21964444

RESUMEN

Tomato mosaic virus (genus, Tobamovirus) is a member of the alphavirus-like superfamily of positive-strand RNA viruses, which include many plant and animal viruses of agronomical and clinical importance. The RNA of alphavirus-like superfamily members encodes replication-associated proteins that contain a putative superfamily 1 helicase domain. To date, a viral three-dimensional superfamily 1 helicase structure has not been solved. For the study reported herein, we expressed tomato mosaic virus replication proteins that contain the putative helicase domain and additional upstream N-terminal residues in Escherichia coli. We found that an additional 155 residues upstream of the N-terminus of the helicase domain were necessary for stability. We developed an efficient procedure for the expression and purification of this fragment and have examined factors that affect its stability. Finally, we also showed that the stable fragment has nucleoside 5'-triphosphatase activity.


Asunto(s)
ARN Helicasas/química , Proteínas Recombinantes/química , Tobamovirus/enzimología , Proteínas Virales/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Datos de Secuencia Molecular , Estabilidad Proteica , Estructura Terciaria de Proteína , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tobamovirus/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
8.
Annu Rev Virol ; 9(1): 193-212, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-35610038

RESUMEN

Positive-strand RNA viruses, the largest genetic class of eukaryotic viruses, include coronaviruses and many other established and emerging pathogens. A major target for understanding and controlling these viruses is their genome replication, which occurs in virus-induced membrane vesicles that organize replication steps and protect double-stranded RNA intermediates from innate immune recognition. The structure of these complexes has been greatly illuminated by recent cryo-electron microscope tomography studies with several viruses. One key finding in diverse systems is the organization of crucial viral RNA replication factors in multimeric rings or crowns that among other functions serve as exit channels gating release of progeny genomes to the cytosol for translation and encapsidation. Emerging results suggest that these crowns serve additional important purposes in replication complex assembly, function, and interaction with downstream processes such as encapsidation. The findings provide insights into viral function and evolution and new bases for understanding, controlling, and engineering positive-strand RNA viruses.


Asunto(s)
ARN Viral , Replicación Viral , Tomografía con Microscopio Electrónico , Virus ARN Monocatenarios Positivos , ARN Bicatenario/genética , ARN Viral/genética
9.
Curr Opin Virol ; 47: 25-31, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33383355

RESUMEN

Positive-strand RNA virus genome replication takes place on intracellular membranes that separate the reduced cytosol from the oxidized extracellular/luminal milieu. Ongoing studies of these membrane-bounded genome replication complexes have revealed underlying common principles in their structure, assembly and functionalization, including transmembrane features and redox dependencies. Among these, members of the alphavirus, flavivirus, and picornavirus supergroups all encode membrane-permeabilizing viroporins required for efficient RNA replication. For flaviviruses and particularly alphavirus supergroup members, these viroporins are linked to activating viral RNA capping and potentially other later-stage RNA replication functions, and to local transmembrane release of oxidizing potential to trigger these changes in cytoplasmic RNA replication complexes. Further exploration of these emerging shared principles could spur development of broad-spectrum antivirals.


Asunto(s)
Genoma Viral/fisiología , Membranas Intracelulares/virología , Oxidación-Reducción , Virus ARN Monocatenarios Positivos/fisiología , Replicación Viral/fisiología , Citoplasma/metabolismo , Citoplasma/virología , Membranas Intracelulares/metabolismo , Virus ARN Monocatenarios Positivos/clasificación , Caperuzas de ARN/metabolismo , ARN Viral/biosíntesis , Proteínas Virales/metabolismo , Compartimentos de Replicación Viral/metabolismo
10.
Mol Plant Microbe Interact ; 23(11): 1413-9, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20636106

RESUMEN

Most viral gene products function inside cells in the presence of various host proteins, nucleic acids, and lipids. Thus, viral gene products come into direct contact with these molecules. The replication proteins of tobamovirus participate not only in viral genome replication but also in counterdefense mechanisms against RNA silencing and other plant defense systems. Accumulating evidence indicates that these functions are carried out through interactions with specific host components. Interactions with some cellular factors, however, are inhibitory to virus multiplication and contribute to host range restriction of tobamovirus. The interactions that have positive and negative impacts on virus multiplication should have been maintained and lost, respectively, during adaptation of the viruses to their respective natural hosts. This review lists the host factors that interact with the replication proteins of tobamovirus and discusses how they influence multiplication of the virus.


Asunto(s)
Plantas/virología , Tobamovirus/fisiología , Proteínas Virales/metabolismo , Replicación Viral/fisiología , Interacciones Huésped-Patógeno , Células Vegetales , Enfermedades de las Plantas/virología
11.
Sci Adv ; 4(1): eaap8258, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29387794

RESUMEN

Positive-strand RNA viruses replicate their genomes in membrane-bounded cytoplasmic complexes. We show that endoplasmic reticulum (ER)-linked genomic RNA replication by brome mosaic virus (BMV), a well-studied member of the alphavirus superfamily, depends on the ER luminal thiol oxidase ERO1. We further show that BMV RNA replication protein 1a, a key protein for the formation and function of vesicular BMV RNA replication compartments on ER membranes, permeabilizes these membranes to release oxidizing potential from the ER lumen. Conserved amphipathic sequences in 1a are sufficient to permeabilize liposomes, and mutations in these sequences simultaneously block membrane permeabilization, formation of a disulfide-linked, oxidized 1a multimer, 1a's RNA capping function, and productive genome replication. These results reveal new transmembrane complexities in positive-strand RNA virus replication, show that-as previously reported for certain picornaviruses and flaviviruses-some alphavirus superfamily members encode viroporins, identify roles for such viroporins in genome replication, and provide a potential new foundation for broad-spectrum antivirals.


Asunto(s)
Antivirales/farmacología , Orgánulos/virología , Virus ARN/fisiología , Replicación Viral , Bromovirus/efectos de los fármacos , Bromovirus/fisiología , Disulfuros/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/virología , Orgánulos/efectos de los fármacos , Permeabilidad , Virus ARN/efectos de los fármacos , Replicación Viral/efectos de los fármacos
13.
Virology ; 434(1): 118-28, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23062762

RESUMEN

The 130-kDa and 180-kDa replication proteins of Tomato mosaic virus (ToMV) covalently bind guanylate and transfer it to the 5' end of RNA to form a cap. We found that guanylylation-competent ToMV replication proteins are in membrane-bound, disulfide-linked complexes. Guanylylation-competent replication proteins of Brome mosaic virus and Cucumber mosaic virus behaved similarly. To investigate the roles of disulfide bonding in the functioning of ToMV replication proteins, each of the 19 cysteine residues in the 130-kDa protein was replaced by a serine residue. Interestingly, three mutant proteins (C179S, C186S and C581S) failed not only to be guanylylated, but also to bind to the replication template and membranes. These mutants could trans-complement viral RNA replication. Considering that ToMV replication proteins recognize the replication templates, bind membranes, and are guanylylated in the cytoplasm that provides a reducing condition, we discuss the roles of cysteine residues and disulfide bonds in ToMV RNA replication.


Asunto(s)
Disulfuros/análisis , Tobamovirus/química , Proteínas Virales/química , Sustitución de Aminoácidos , Bromovirus/química , Cucumovirus/química , Cisteína/genética , Guanosina Monofosfato/metabolismo , Mutagénesis Sitio-Dirigida , Unión Proteica , Serina/genética , Nicotiana/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Virales/fisiología , Replicación Viral
14.
Structure ; 19(7): 988-98, 2011 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-21742265

RESUMEN

ADP-ribosylation factor (Arf) and other Arf-family small G proteins participate in many cellular functions via their characteristic GTP/GDP conformational cycles, during which a nucleotide(∗)Mg(2+)-binding site communicates with a remote N-terminal helix. However, the conformational interplay between the nucleotides, the helix, the protein core, and Mg(2+) has not been fully delineated. Herein, we report a study of the dynamics of an Arf-family protein, Arl8, under various conditions by means of NMR relaxation spectroscopy. The data indicated that, when GDP is bound, the protein core, which does not include the N-terminal helix, reversibly transition between an Arf-family GDP form and another conformation that resembles the Arf-family GTP form. Additionally, we found that the N-terminal helix and Mg(2+), respectively, stabilize the aforementioned former and latter conformations in a population-shift manner. Given the dynamics of the conformational changes, we can describe the Arl8 GTP/GDP cycle in terms of an energy diagram.


Asunto(s)
Factores de Ribosilacion-ADP/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Magnesio/metabolismo , Nucleótidos/metabolismo , Factores de Ribosilacion-ADP/metabolismo , Sitios de Unión , Calorimetría , Cristalografía por Rayos X , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Molecular , Unión Proteica , Estructura Secundaria de Proteína , Termodinámica
16.
J Virol ; 80(17): 8459-68, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16912296

RESUMEN

Extracts of vacuole-depleted, tomato mosaic virus (ToMV)-infected plant protoplasts contained an RNA-dependent RNA polymerase (RdRp) that utilized an endogenous template to synthesize ToMV-related positive-strand RNAs in a pattern similar to that observed in vivo. Despite the fact that only minor fractions of the ToMV 130- and 180-kDa replication proteins were associated with membranes, the RdRp activity was exclusively associated with membranes. A genome-sized, negative-strand RNA template was associated with membranes and was resistant to micrococcal nuclease unless treated with detergents. Non-membrane-bound replication proteins did not exhibit RdRp activity, even in the presence of ToMV RNA. While the non-membrane-bound replication proteins remained soluble after treatment with Triton X-100, the same treatment made the membrane-bound replication proteins in a form that precipitated upon low-speed centrifugation. On the other hand, the detergent lysophosphatidylcholine (LPC) efficiently solubilized the membrane-bound replication proteins. Upon LPC treatment, the endogenous template-dependent RdRp activity was reduced and exogenous ToMV RNA template-dependent RdRp activity appeared instead. This activity, as well as the viral 130-kDa protein and the host proteins Hsp70, eukaryotic translation elongation factor 1A (eEF1A), TOM1, and TOM2A copurified with FLAG-tagged viral 180-kDa protein from LPC-solubilized membranes. In contrast, Hsp70 and only small amounts of the 130-kDa protein and eEF1A copurified with FLAG-tagged non-membrane-bound 180-kDa protein. These results suggest that the viral replication proteins are associated with the intracellular membranes harboring TOM1 and TOM2A and that this association is important for RdRp activity. Self-association of the viral replication proteins and their association with other host proteins may also be important for RdRp activity.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , ARN Viral/biosíntesis , ARN Polimerasa Dependiente del ARN/metabolismo , Tobamovirus/metabolismo , Replicación Viral , Células Cultivadas , Solanum lycopersicum/virología , Plantas Modificadas Genéticamente , Protoplastos/virología , Nicotiana/virología , Tobamovirus/genética
17.
J Virol ; 78(12): 6102-11, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15163703

RESUMEN

The cum1 and cum2 mutations of Arabidopsis thaliana inhibit cucumber mosaic virus (CMV) multiplication. In cum1 and cum2 protoplasts, CMV RNA and the coat protein accumulated to wild-type levels, but the accumulation of the 3a protein of CMV, which is necessary for cell-to-cell movement of the virus, was strongly reduced compared with that in wild-type protoplasts. In cum2 protoplasts, the accumulation of turnip crinkle virus (TCV)-related RNA and proteins was also reduced. Positional cloning demonstrated that CUM1 and CUM2 encode eukaryotic translation initiation factors 4E and 4G, respectively. Unlike most cellular mRNA, the CMV RNA lacks a poly(A) tail, whereas the TCV RNA lacks both a 5'-terminal cap and a poly(A) tail. In vivo translation analyses, using chimeric luciferase mRNA carrying the terminal structures and untranslated sequences of the CMV or TCV RNA, demonstrated that these viral untranslated sequences contain elements that regulate the expression of encoded proteins positively or negatively. The cum1 and cum2 mutations had different effects on the action of these elements, suggesting that the cum1 and cum2 mutations cause inefficient production of CMV 3a protein and that the cum2 mutation affects the production of TCV-encoded proteins.


Asunto(s)
Arabidopsis/virología , Cucumovirus/patogenicidad , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Mutación , Arabidopsis/genética , Arabidopsis/metabolismo , Secuencia de Bases , Carmovirus/genética , Carmovirus/metabolismo , Mapeo Cromosómico , Cucumovirus/genética , Cucumovirus/fisiología , Factor 4E Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/genética , Datos de Secuencia Molecular , Proteínas de Movimiento Viral en Plantas , Protoplastos/virología , ARN Viral/biosíntesis , ARN Viral/genética , Análisis de Secuencia de ADN , Proteínas Virales/genética , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA