Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Kidney Int ; 98(1): 133-146, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32456966

RESUMEN

The importance of the glomerular basement membrane (GBM) in glomerular filtration is underscored by the manifestations of Alport and Pierson syndromes, caused by defects in type IV collagen α3α4α5 and the laminin ß2 chain, respectively. Lamb2 null mice, which model the most severe form of Pierson syndrome, exhibit proteinuria prior to podocyte foot process effacement and are therefore useful for studying GBM permselectivity. We hypothesize that some LAMB2 missense mutations that cause mild forms of Pierson syndrome induce GBM destabilization with delayed effects on podocytes. While generating a CRISPR/Cas9-mediated analogue of a human LAMB2 missense mutation in mice, we identified a 44-amino acid deletion (LAMB2-Del44) within the laminin N-terminal domain, a domain mediating laminin polymerization. Laminin heterotrimers containing LAMB2-Del44 exhibited a 90% reduction in polymerization in vitro that was partially rescued by type IV collagen and nidogen. Del44 mice showed albuminuria at 1.8-6.0 g/g creatinine (ACR) at one to two months, plateauing at an average 200 g/g ACR at 3.7 months, when GBM thickening and hallmarks of nephrotic syndrome were first observed. Despite the massive albuminuria, some Del44 mice survived for up to 15 months. Blood urea nitrogen was modestly elevated at seven-nine months. Eight to nine-month-old Del44 mice exhibited glomerulosclerosis and interstitial fibrosis. Similar to Lamb2-/- mice, proteinuria preceded foot process effacement. Foot processes were widened but not effaced at one-two months despite the high ACRs. At three months some individual foot processes were still observed amid widespread effacement. Thus, our chronic model of nephrotic syndrome may prove useful to study filtration mechanisms, long-term proteinuria with preserved kidney function, and to test therapeutics.


Asunto(s)
Síndrome Nefrótico , Trastornos de la Pupila , Animales , Laminina/genética , Ratones , Ratones Noqueados , Síndrome Nefrótico/genética , Trastornos de la Pupila/genética
2.
J Virol ; 92(5)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29237843

RESUMEN

Human parvovirus B19 (B19V) infection of human erythroid progenitor cells (EPCs) induces a DNA damage response and cell cycle arrest at late S phase, which facilitates viral DNA replication. However, it is not clear exactly which cellular factors are employed by this single-stranded DNA virus. Here, we used microarrays to systematically analyze the dynamic transcriptome of EPCs infected with B19V. We found that DNA metabolism, DNA replication, DNA repair, DNA damage response, cell cycle, and cell cycle arrest pathways were significantly regulated after B19V infection. Confocal microscopy analyses revealed that most cellular DNA replication proteins were recruited to the centers of viral DNA replication, but not the DNA repair DNA polymerases. Our results suggest that DNA replication polymerase δ and polymerase α are responsible for B19V DNA replication by knocking down its expression in EPCs. We further showed that although RPA32 is essential for B19V DNA replication and the phosphorylated forms of RPA32 colocalized with the replicating viral genomes, RPA32 phosphorylation was not necessary for B19V DNA replication. Thus, this report provides evidence that B19V uses the cellular DNA replication machinery for viral DNA replication.IMPORTANCE Human parvovirus B19 (B19V) infection can cause transient aplastic crisis, persistent viremia, and pure red cell aplasia. In fetuses, B19V infection can result in nonimmune hydrops fetalis and fetal death. These clinical manifestations of B19V infection are a direct outcome of the death of human erythroid progenitors that host B19V replication. B19V infection induces a DNA damage response that is important for cell cycle arrest at late S phase. Here, we analyzed dynamic changes in cellular gene expression and found that DNA metabolic processes are tightly regulated during B19V infection. Although genes involved in cellular DNA replication were downregulated overall, the cellular DNA replication machinery was tightly associated with the replicating single-stranded DNA viral genome and played a critical role in viral DNA replication. In contrast, the DNA damage response-induced phosphorylated forms of RPA32 were dispensable for viral DNA replication.


Asunto(s)
División Celular , Replicación del ADN , Interacciones Huésped-Patógeno , Infecciones por Parvoviridae/virología , Parvovirus B19 Humano/genética , Parvovirus B19 Humano/metabolismo , Replicación Viral , Bromodesoxiuridina/metabolismo , Antígenos CD36/análisis , Antígenos CD36/metabolismo , Ciclo Celular , Puntos de Control del Ciclo Celular , Línea Celular , Daño del ADN , ADN Polimerasa III , ADN Polimerasa beta , Reparación del ADN , ADN de Cadena Simple/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Células Precursoras Eritroides/citología , Células Precursoras Eritroides/virología , Muerte Fetal , Regulación Viral de la Expresión Génica/fisiología , Genoma Viral , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Humanos , Parvovirus B19 Humano/patogenicidad , Fosforilación , Mapas de Interacción de Proteínas , Aplasia Pura de Células Rojas/virología , Proteína de Replicación A/genética , Fase S , Transcriptoma , Viremia/virología
3.
Muscle Nerve ; 49(3): 315-24, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24122772

RESUMEN

Physical activity plays an important role in preventing chronic disease in adults and the elderly. Exercise has beneficial effects on the nervous system, including at the neuromuscular junction (NMJ). Exercise causes hypertrophy of NMJs and improves recovery from peripheral nerve injuries, whereas decreased physical activity causes degenerative changes in NMJs. Recent studies have begun to elucidate molecular mechanisms underlying the beneficial effects of exercise. These mechanisms involve Bassoon, neuregulin-1, peroxisome proliferator-activated receptor gamma coactivator 1α, insulin-like growth factor-1, glial cell line-derived neurotrophic factor, neurotrophin 4, Homer, and nuclear factor of activated T cells c1. For example, NMJ denervation and active zone decreases have been observed in aged NMJs, but these age-dependent degenerative changes can be ameliorated by exercise. In this review we assess the effects of exercise on the maintenance and regeneration of NMJs and highlight recent insights into the molecular mechanisms underlying these exercise effects.


Asunto(s)
Ejercicio Físico/fisiología , Unión Neuromuscular/fisiología , Envejecimiento/fisiología , Animales , Humanos , Proteínas del Tejido Nervioso/metabolismo , Neurregulina-1/metabolismo , Unión Neuromuscular/metabolismo , PPAR gamma/metabolismo
4.
Neuroreport ; 35(12): 805-812, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38935067

RESUMEN

Neuromuscular junctions are innervated by motor and sympathetic nerves. The sympathetic modulation of motor innervation shows functional decline during aging, but the cellular and molecular mechanism of this change is not fully known. This study aimed to evaluate the effect of aging on sympathetic nerves and synaptic proteins at mouse neuromuscular junctions. Sympathetic nerves, presynaptic, and postsynaptic proteins of sympathetic nerves at neuromuscular junctions were visualized using immunohistochemistry, and aging-related changes were compared between adult-, aged-, and nicotinamide mononucleotide (NMN) administered aged mice. Sympathetic nerves were detected by anti-tyrosine hydroxylase antibody, and presynaptic protein vesicular monoamine transporter 2 colocalized with the sympathetic nerves. These two signals surrounded motor nerve terminals and acetylcholine receptor clusters. Postsynaptic neurotransmitter receptor ß2-adrenergic receptors colocalized with motor nerve terminals and resided in reduced density at extrasynaptic sarcolemma. The signal intensity of the sympathetic nerve marker did not show a significant difference at neuromuscular junctions between 8.5-month-old adult mice and 25-month-old aged mice. However, the signal intensity of vesicular monoamine transporter 2 and ß2-adrenergic receptors showed age-related decline at neuromuscular junctions. Interestingly, both age-related declines reverted to the adult level after 1 month of oral administration of NMN by drinking water. In contrast, NMN administration did not alter the expression level of sympathetic marker tyrosine hydroxylase at neuromuscular junctions. The results suggest a functional decline of sympathetic nerves at aged neuromuscular junctions due to decreases in presynaptic and postsynaptic proteins, which can be reverted to the adult level by NMN administration.


Asunto(s)
Envejecimiento , Unión Neuromuscular , Mononucleótido de Nicotinamida , Animales , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/metabolismo , Envejecimiento/metabolismo , Envejecimiento/efectos de los fármacos , Ratones , Mononucleótido de Nicotinamida/farmacología , Mononucleótido de Nicotinamida/administración & dosificación , Masculino , Terminales Presinápticos/metabolismo , Terminales Presinápticos/efectos de los fármacos , Ratones Endogámicos C57BL , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/metabolismo , Receptores Adrenérgicos beta 2/metabolismo
5.
Development ; 137(20): 3489-99, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20843861

RESUMEN

Mammalian limb and trunk skeletal muscles are composed of muscle fibers that differ in contractile and molecular properties. They are commonly divided into four categories according to the myosin heavy chain that they express: I, IIA, IIX and IIB, ranging from slowest to fastest. Individual motor axons innervate tens of muscle fibers, nearly all of which are of the same type. The mechanisms accounting for this striking specificity, termed motor unit homogeneity, remain incompletely understood, in part because there have been no markers for motoneuron types. Here we show in mice that the synaptic vesicle protein SV2A is selectively localized in motor nerve terminals on slow (type I and small type IIA) muscle fibers; its close relatives, SV2B and SV2C, are present in all motor nerve terminals. SV2A is broadly expressed at birth; fast motoneurons downregulate its expression during the first postnatal week. An inducible transgene incorporating regulatory elements from the Sv2a gene permits selective labeling of slow motor units and reveals their composition. Overexpression of the transcriptional co-regulator PGC1α in muscle fibers, which converts them to a slow phenotype, leads to an increased frequency of SV2A-positive motor nerve terminals, indicating a fiber type-specific retrograde influence of muscle fibers on their innervation. This retrograde influence must be integrated with known anterograde influences in order to understand how motor units become homogeneous.


Asunto(s)
Marcadores Genéticos/genética , Glicoproteínas de Membrana/metabolismo , Neuronas Motoras/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Músculo Esquelético/inervación , Proteínas del Tejido Nervioso/metabolismo , Terminales Presinápticos/metabolismo , Animales , Inmunohistoquímica , Hibridación in Situ , Ratones , Fibras Musculares de Contracción Lenta/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Transactivadores/metabolismo , Factores de Transcripción , Transgenes/genética
6.
Cells ; 12(17)2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37681874

RESUMEN

Physiological aging causes a decline of motor function due to impairment of motor cortex function, losses of motor neurons and neuromuscular junctions, sarcopenia, and frailty. There is increasing evidence suggesting that the changes in motor function start earlier in the middle-aged stage. The mechanism underlining the middle-aged decline in motor function seems to relate to the central nervous system rather than the peripheral neuromuscular system. The motor cortex is one of the responsible central nervous systems for coordinating and learning motor functions. The neuronal circuits in the motor cortex show plasticity in response to motor learning, including LTP. This motor cortex plasticity seems important for the intervention method mechanisms that revert the age-related decline of motor function. This review will focus on recent findings on the role of plasticity in the motor cortex for motor function and age-related changes. The review will also introduce our recent identification of an age-related decline of neuronal activity in the primary motor cortex of middle-aged mice using electrophysiological recordings of brain slices.


Asunto(s)
Corteza Motora , Animales , Ratones , Envejecimiento , Encéfalo , Plasticidad Neuronal
7.
Sci Rep ; 13(1): 4323, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922562

RESUMEN

Physiological aging causes motor function decline and anatomical and biochemical changes in the motor cortex. We confirmed that middle-aged mice at 15-18 months old show motor function decline, which can be restored to the young adult level by supplementing with mitochondrial electron transporter coenzyme Q10 (CoQ10) as a water-soluble nanoformula by drinking water for 1 week. CoQ10 supplementation concurrently improved brain mitochondrial respiration but not muscle strength. Notably, we identified an age-related decline in field excitatory postsynaptic potential (fEPSP) amplitude in the pathway from layers II/III to V of the primary motor area of middle-aged mice, which was restored to the young adult level by supplementing with CoQ10 for 1 week but not by administering CoQ10 acutely to brain slices. Interestingly, CoQ10 with high-frequency stimulation induced NMDA receptor-dependent long-term potentiation (LTP) in layer V of the primary motor cortex of middle-aged mice. Importantly, the fEPSP amplitude showed a larger input‒output relationship after CoQ10-dependent LTP expression. These data suggest that CoQ10 restores the motor function of middle-aged mice by improving brain mitochondrial function and the basal fEPSP level of the motor cortex, potentially by enhancing synaptic plasticity efficacy. Thus, CoQ10 supplementation may ameliorate the age-related decline in motor function in humans.


Asunto(s)
Corteza Motora , Ubiquinona , Humanos , Persona de Mediana Edad , Adulto Joven , Ratones , Animales , Lactante , Ubiquinona/farmacología , Ubiquinona/metabolismo , Corteza Motora/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Suplementos Dietéticos
8.
J Neurosci ; 31(2): 512-25, 2011 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-21228161

RESUMEN

Synapse formation requires the organization of presynaptic active zones, the synaptic vesicle release sites, in precise apposition to postsynaptic neurotransmitter receptor clusters; however, the molecular mechanisms responsible for these processes remain unclear. Here, we show that P/Q-type and N-type voltage-dependent calcium channels (VDCCs) play essential roles as scaffolding proteins in the organization of presynaptic active zones. The neuromuscular junction of double knock-out mice for P/Q- and N-type VDCCs displayed a normal size but had significantly reduced numbers of active zones and docked vesicles and featured an attenuation of the active-zone proteins Bassoon, Piccolo, and CAST/Erc2. Consistent with this phenotype, direct interactions of the VDCC ß1b or ß4 subunits and the active zone-specific proteins Bassoon or CAST/Erc2 were confirmed by immunoprecipitation. A decrease in the number of active zones caused by a loss of presynaptic VDCCs resembled the pathological conditions observed in the autoimmune neuromuscular disorder Lambert-Eaton myasthenic syndrome. At the synaptic cleft of double knock-out mice, we also observed a decrease of the synaptic organizer laminin ß2 protein, an extracellular ligand of P/Q- and N-type VDCCs. However, the transcription level of laminin ß2 did not decrease in double knock-out mice, suggesting that the synaptic accumulation of laminin ß2 protein required its interaction with presynaptic VDCCs. These results suggest that presynaptic VDCCs link the target-derived synapse organizer laminin ß2 to active-zone proteins and function as scaffolding proteins to anchor active-zone proteins to the presynaptic membrane.


Asunto(s)
Canales de Calcio Tipo N/fisiología , Canales de Calcio Tipo P/fisiología , Canales de Calcio Tipo Q/fisiología , Proteínas del Citoesqueleto/metabolismo , Laminina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular/metabolismo , Sinapsis/metabolismo , Animales , Canales de Calcio Tipo N/genética , Canales de Calcio Tipo P/genética , Canales de Calcio Tipo Q/genética , Recuento de Células , Electromiografía , Embrión de Mamíferos , Ratones , Ratones Noqueados , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Nervio Frénico/metabolismo , Nervio Frénico/ultraestructura , Subunidades de Proteína/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo
9.
Biomolecules ; 12(2)2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35204679

RESUMEN

Synaptic transmission is essential for controlling motor functions and maintaining brain functions such as walking, breathing, cognition, learning, and memory. Neurotransmitter release is regulated by presynaptic molecules assembled in active zones of presynaptic terminals. The size of presynaptic terminals varies, but the size of a single active zone and the types of presynaptic molecules are highly conserved among neuromuscular junctions (NMJs) and central synapses. Three parameters play an important role in the determination of neurotransmitter release properties at NMJs and central excitatory/inhibitory synapses: the number of presynaptic molecular clusters, the protein families of the presynaptic molecules, and the distance between presynaptic molecules and voltage-gated calcium channels. In addition, dysfunction of presynaptic molecules causes clinical symptoms such as motor and cognitive decline in patients with various neurological disorders and during aging. This review focuses on the molecular mechanisms responsible for the functional similarities and differences between excitatory and inhibitory synapses in the peripheral and central nervous systems, and summarizes recent findings regarding presynaptic molecules assembled in the active zone. Furthermore, we discuss the relationship between functional alterations of presynaptic molecules and dysfunction of NMJs or central synapses in diseases and during aging.


Asunto(s)
Unión Neuromuscular , Sinapsis , Envejecimiento/metabolismo , Humanos , Unión Neuromuscular/metabolismo , Terminales Presinápticos/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica
10.
Artículo en Inglés | MEDLINE | ID: mdl-36444378

RESUMEN

Introduction: The symptoms of Amyotrophic Lateral Sclerosis (ALS) include muscle weakness and eventual paralysis. These symptoms result from denervation of the neuromuscular junction (NMJ) and motor neuron cell death in the brain and spinal cord. Due to the "dying back" pattern of motor neuron degeneration, protecting NMJs should be a therapeutic priority. Although exercise has the potential to protect against NMJ denervation, its use in ALS has been controversial. Most preclinical studies have focused on aerobic exercise, which report that exercise can be beneficial at moderate intensities. The effects of resistance exercise on NMJ preservation in limb muscles have not been explored. Methods: We trained male SOD1-G93A rats, which model ALS, to perform a unilateral isometric forelimb resistance exercise task. This task allows within-animal comparisons of trained and untrained forelimbs. We then determined the effects of isometric resistance exercise on NMJ denervation and AMP kinase (AMPK) activation in forelimb muscles. Results: Our results revealed that SOD1-G93A rats were able to learn and perform the task similarly to wildtype rats, even after loss of body weight. SOD1-G93A rats exhibited significantly greater NMJ innervation in their trained vs their untrained forelimb biceps muscles. Measures of activated (phosphorylated) AMPK (pAMPK) were also greater in the trained vs untrained forelimb triceps muscles. Discussion: These results demonstrate that isometric resistance exercise may protect against NMJ denervation in ALS. Future studies are required to determine the extent to which our findings generalize to female SOD1-G93A rats and to other subtypes of ALS.

11.
Sci Rep ; 11(1): 11051, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34040085

RESUMEN

Amyotrophic lateral sclerosis (ALS) remains a devastating motor neuron disease with limited treatment options. Oxaloacetate treatment has a neuroprotective effect in rodent models of seizure and neurodegeneration. Therefore, we treated the ALS model superoxide dismutase 1 (SOD1) G93A mice with oxaloacetate and evaluated their neuromuscular function and lifespan. Treatment with oxaloacetate beginning in the presymptomatic stage significantly improved neuromuscular strength measured during the symptomatic stage in the injected mice compared to the non-treated group. Oxaloacetate treatment starting in the symptomatic stage significantly delayed limb paralysis compared with the non-treated group. For lifespan analysis, oxaloacetate treatment did not show a statistically significant positive effect, but the treatment did not shorten the lifespan. Mechanistically, SOD1G93A mice showed increased levels of tumor necrosis factor-α (TNFα) and peroxisome proliferative activated receptor gamma coactivator 1α (PGC-1α) mRNAs in the spinal cord. However, oxaloacetate treatment reverted these abnormal levels to that of wild-type mice. Similarly, the altered expression level of total NF-κB protein returned to that of wild-type mice with oxaloacetate treatment. These results suggest that the beneficial effects of oxaloacetate treatment in SOD1G93A mice may reflect the effects on neuroinflammation or bioenergetic stress.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Actividad Motora/efectos de los fármacos , Ácido Oxaloacético/farmacología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Médula Espinal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Longevidad/efectos de los fármacos , Ratones , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Ácido Oxaloacético/uso terapéutico , Médula Espinal/metabolismo , Superóxido Dismutasa/metabolismo
12.
Nature ; 432(7017): 580-7, 2004 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-15577901

RESUMEN

Synapse formation requires the differentiation of a functional nerve terminal opposite a specialized postsynaptic membrane. Here, we show that laminin beta2, a component of the synaptic cleft at the neuromuscular junction, binds directly to calcium channels that are required for neurotransmitter release from motor nerve terminals. This interaction leads to clustering of channels, which in turn recruit other presynaptic components. Perturbation of this interaction in vivo results in disassembly of neurotransmitter release sites, resembling defects previously observed in an autoimmune neuromuscular disorder, Lambert-Eaton myasthenic syndrome. These results identify an extracellular ligand of the voltage-gated calcium channel as well as a new laminin receptor. They also suggest a model for the development of nerve terminals, and provide clues to the pathogenesis of a synaptic disease.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Laminina/metabolismo , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Sinapsis/metabolismo , Animales , Sitios de Unión , Canales de Calcio Tipo N/química , Canales de Calcio Tipo N/deficiencia , Canales de Calcio Tipo N/genética , Células Cultivadas , Laminina/química , Laminina/deficiencia , Laminina/genética , Ratones , Mutación/genética , Unión Neuromuscular/citología , Unión Neuromuscular/metabolismo , Neurotransmisores/metabolismo , Terminales Presinápticos/metabolismo , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Receptores de Laminina/metabolismo , Vesículas Sinápticas/metabolismo
13.
Front Mol Neurosci ; 13: 568426, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33328881

RESUMEN

The neuromuscular junction (NMJ) is a chemical synapse formed between a presynaptic motor neuron and a postsynaptic muscle cell. NMJs in most vertebrate species share many essential features; however, some differences distinguish human NMJs from others. This review will describe the pre- and postsynaptic structures of human NMJs and compare them to NMJs of laboratory animals. We will focus on age-dependent declines in function and changes in the structure of human NMJs. Furthermore, we will describe insights into the aging process revealed from mouse models of accelerated aging. In addition, we will compare aging phenotypes to other human pathologies that cause impairments of pre- and postsynaptic structures at NMJs. Finally, we will discuss potential intervention approaches for attenuating age-related NMJ dysfunction and sarcopenia in humans.

14.
Neurosci Lett ; 715: 134644, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31765730

RESUMEN

Super-resolution microscopy techniques offer subdiffraction limited resolution that is two- to ten-fold improved compared to that offered by conventional confocal microscopy. This breakthrough in resolution for light microscopy has contributed to new findings in neuroscience and synapse biology. This review will focus on the Structured Illumination Microscopy (SIM), Stimulated emission depletion (STED) microscopy, and Stochastic optical reconstruction microscopy (STORM) / Single molecule localization microscopy (SMLM) techniques and compare them for the better understanding of their differences and their suitability for the analysis of synapse biology. In addition, we will discuss a few practical aspects of these microscopic techniques, including resolution, image acquisition speed, multicolor capability, and other advantages and disadvantages. Tips for the improvement of microscopy will be introduced; for example, information resources for recommended dyes, the limitations of multicolor analysis, and capabilities for live imaging. In addition, we will summarize how super-resolution microscopy has been used for analyses of neuromuscular junctions and synapses.


Asunto(s)
Microscopía Fluorescente/métodos , Unión Neuromuscular/citología , Sinapsis , Animales , Humanos
15.
J Neurosci ; 28(10): 2366-74, 2008 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-18322083

RESUMEN

Axons and dendrites of developing neurons establish distributed innervation patterns enabling precise discrimination in sensory systems. We describe the role of the extracellular matrix molecule, laminin beta2, interacting with the Ca(V)2.2 calcium channel in establishing appropriate sensory innervation. In vivo, Ca(V)2.2 is expressed on the growth cones of Xenopus laevis sensory neurites and laminin beta2 is expressed in the skin. Culturing neurons on a laminin beta2 substrate inhibits neurite outgrowth in a specific and calcium-dependent manner. Blocking signaling between laminin beta2 and Ca(V)2.2 leads to increased numbers of sensory terminals in vivo. These findings suggest that interactions between extracellular matrix molecules and calcium channels regulate connectivity in the developing nervous system.


Asunto(s)
Canales de Calcio Tipo N/fisiología , Codón de Terminación/fisiología , Inhibidores de Crecimiento/fisiología , Laminina/genética , Neuritas/fisiología , Neuronas Aferentes/fisiología , Transducción de Señal/genética , Animales , Canales de Calcio Tipo N/genética , Proliferación Celular , Células Cultivadas , Codón de Terminación/genética , Femenino , Laminina/antagonistas & inhibidores , Laminina/biosíntesis , Inhibición Neural/genética , Biosíntesis de Proteínas/genética , Biosíntesis de Proteínas/fisiología , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/biosíntesis , Subunidades de Proteína/genética , Transducción de Señal/fisiología , Proteínas de Xenopus/fisiología , Xenopus laevis
16.
Neuron ; 35(6): 1067-83, 2002 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-12354397

RESUMEN

Death pathways restricted to specific neuronal classes could potentially allow for precise control of developmental neuronal death and also underlie the selectivity of neuronal loss in neurodegenerative disease. We show that Fas-triggered death of normal embryonic motoneurons requires transcriptional upregulation of neuronal NOS and involves Daxx, ASK1, and p38 together with the classical FADD/caspase-8 cascade. No evidence for involvement of this pathway was found in cells other than motoneurons. Motoneurons from transgenic mice overexpressing ALS-linked SOD1 mutants (G37R, G85R, or G93A) displayed increased susceptibility to activation of this pathway: they were more sensitive to Fas- or NO-triggered cell death but not to trophic deprivation or excitotoxic stimulation. Thus, triggering of a motoneuron-restricted cell death pathway by neighboring cells might contribute to motoneuron loss in ALS.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Esclerosis Amiotrófica Lateral/metabolismo , Muerte Celular/genética , Sistema Nervioso Central/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Neuronas Motoras/metabolismo , Mutación/genética , Superóxido Dismutasa/metabolismo , Receptor fas/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Proteínas Portadoras/metabolismo , Caspasa 8 , Caspasa 9 , Caspasas/metabolismo , Células Cultivadas , Proteínas Co-Represoras , Proteína de Dominio de Muerte Asociada a Fas , Femenino , Feto , Ligamiento Genético/genética , MAP Quinasa Quinasa Quinasa 5 , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Ratones , Ratones Transgénicos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Chaperonas Moleculares , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Proteínas Nucleares/metabolismo , Ácido Peroxinitroso/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa-1 , Superóxidos/metabolismo , Regulación hacia Arriba/genética , Receptor fas/genética , Proteínas Quinasas p38 Activadas por Mitógenos
17.
Neuron ; 42(2): 237-51, 2004 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-15091340

RESUMEN

Cysteine string protein alpha (CSPalpha)--an abundant synaptic vesicle protein that contains a DNA-J domain characteristic of Hsp40 chaperones--is thought to regulate Ca2+ channels and/or synaptic vesicle exocytosis. We now show that, in young mice, deletion of CSPalpha does not impair survival and causes no significant changes in presynaptic Ca2+ currents or synaptic vesicle exocytosis as measured in the Calyx of Held synapse. At 2-4 weeks of age, however, CSPalpha-deficient mice develop a progressive, fatal sensorimotor disorder. The neuromuscular junctions and Calyx synapses of CSPalpha-deficient mice exhibit increasing neurodegenerative changes, synaptic transmission becomes severely impaired, and the mutant mice die at approximately 2 months of age. Our data suggest that CSPalpha is not essential for the normal operation of Ca2+ channels or exocytosis but acts as a presynaptic chaperone that maintains continued synaptic function, raising the possibility that enhanced CSPalpha function could attenuate neurodegenerative diseases.


Asunto(s)
Proteínas de la Membrana/biosíntesis , Degeneración Nerviosa/metabolismo , Terminales Presinápticos/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Encéfalo/ultraestructura , Proteínas del Choque Térmico HSP40 , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Degeneración Nerviosa/genética , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Unión Neuromuscular/ultraestructura , Terminales Presinápticos/ultraestructura , Vesículas Sinápticas/genética , Vesículas Sinápticas/ultraestructura
18.
Neurosci Res ; 127: 78-88, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29221906

RESUMEN

Neurotransmitter release occurs at active zones, which are specialized regions of the presynaptic membrane. A dense collection of proteins at the active zone provides a platform for molecular interactions that promote recruitment, docking, and priming of synaptic vesicles. At mammalian neuromuscular junctions (NMJs), muscle-derived laminin ß2 interacts with presynaptic voltage-gated calcium channels to organize active zones. The molecular architecture of presynaptic active zones has been revealed using super-resolution microscopy techniques that combine nanoscale resolution and multiple molecular identification. Interestingly, the active zones of adult NMJs are not stable structures and thus become impaired during aging due to the selective degeneration of specific active zone proteins. This review will discuss recent progress in the understanding of active zone nanoarchitecture and the mechanisms underlying active zone organization in mammalian NMJs. Furthermore, we will summarize the age-related degeneration of active zones at NMJs, and the role of exercise in maintaining active zones.


Asunto(s)
Envejecimiento/patología , Enfermedades Neuromusculares/patología , Unión Neuromuscular , Terminales Presinápticos , Animales , Humanos , Mamíferos , Unión Neuromuscular/patología , Unión Neuromuscular/fisiopatología , Unión Neuromuscular/ultraestructura , Terminales Presinápticos/metabolismo , Terminales Presinápticos/patología , Terminales Presinápticos/ultraestructura
19.
Neurol Clin ; 36(2): 231-240, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29655446

RESUMEN

Neuromuscular junctions (NMJs) form between nerve terminals of spinal cord motor neurons and skeletal muscles, and perisynaptic Schwann cells and kranocytes cap NMJs. One muscle fiber has one NMJ, which is innervated by one motor nerve terminal. NMJs are excitatory synapses that use P/Q-type voltage-gated calcium channels to release the neurotransmitter acetylcholine. Acetylcholine receptors accumulate at the postsynaptic specialization called the end plate on the muscle fiber membrane, the sarcolemma. Proteins essential for the organization of end plates include agrin secreted from nerve terminals, Lrp4 and MuSK receptors for agrin, and Dok-7 and rapsyn cytosolic proteins in the muscle.


Asunto(s)
Unión Neuromuscular/anatomía & histología , Unión Neuromuscular/patología , Animales , Humanos
20.
Neurosci Lett ; 666: 1-4, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29246791

RESUMEN

Neuronal gap junctional protein connexin 36 (Cx36) contributes to neuronal death following a range of acute brain insults such as ischemia, traumatic brain injury and epilepsy. Whether Cx36 contributes to neuronal death and pathological outcomes in chronic neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), is not known. We show here that the expression of Cx36 is significantly decreased in lumbar segments of the spinal cord of both human ALS subjects and SOD1G93A mice as compared to healthy human and wild-type mouse controls, respectively. In purified neuronal cultures prepared from the spinal cord of wild-type mice, knockdown of Cx36 reduces neuronal death caused by overexpression of the mutant human SOD1-G93A protein. Taken together, these data suggest a possible contribution of Cx36 to ALS pathogenesis. A perspective for the use of blockers of Cx36 gap junction channels for ALS therapy is discussed.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Conexinas/metabolismo , Animales , Modelos Animales de Enfermedad , Uniones Comunicantes/metabolismo , Humanos , Ratones , Neuronas Motoras/metabolismo , Médula Espinal/metabolismo , Superóxido Dismutasa-1/metabolismo , Proteína delta-6 de Union Comunicante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA