Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Osteoarthritis Cartilage ; 32(6): 634-642, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38160743

RESUMEN

Hemophilia A and B are rare X-linked genetic bleeding disorders due to a complete or partial deficiency in the coagulation factors VIII or IX, respectively. The main treatment for hemophilia is prophylactic and based on coagulation factor replacement therapies. These treatments have significantly reduced bleeding and improved the patients' quality of life. Nevertheless, repeated joint bleedings (hemarthroses), even subclinical hemarthroses, can lead to hemophilic arthropathy (HA). This disabling condition is characterized by chronic pain due to synovial inflammation, cartilage and bone destruction requiring ultimately joint replacement. HA resembles to rheumatoid arthritis because of synovitis but HA is considered as having similarities with osteoarthritis as illustrated by the migration of immune cells, production of inflammatory cytokines, synovial hypertrophy and cartilage damage. Various drugs have been evaluated for the management of HA with limited success. The objective of the review is to discuss new therapeutic approaches with a special focus on the studies that have investigated the potential of using mesenchymal stromal cells (MSCs) in the management of HA. A systematic review of the literature has been made. Most of the studies have focused on the interest of MSCs for the delivery of missing factors VIII or IX but in some studies, more insight on the effect of MSC injection on synovial inflammation or cartilage structure were provided and put in perspective for possible clinical applications.


Asunto(s)
Hemofilia A , Hemofilia B , Trasplante de Células Madre Mesenquimatosas , Humanos , Hemartrosis/etiología , Hemartrosis/terapia , Hemofilia A/complicaciones , Hemofilia A/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas , Hemofilia B/complicaciones , Hemofilia B/terapia
2.
J Nanobiotechnology ; 22(1): 255, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755672

RESUMEN

Age is the most important risk factor in degenerative diseases such as osteoarthritis (OA), which is associated with the accumulation of senescent cells in the joints. Here, we aimed to assess the impact of senescence on the therapeutic properties of extracellular vesicles (EVs) from human fat mesenchymal stromal cells (ASCs) in OA. We generated a model of DNA damage-induced senescence in ASCs using etoposide and characterized EVs isolated from their conditioned medium (CM). Senescent ASCs (S-ASCs) produced 3-fold more EVs (S-EVs) with a slightly bigger size and that contain 2-fold less total RNA. Coculture experiments showed that S-ASCs were as efficient as healthy ASCs (H-ASCs) in improving the phenotype of OA chondrocytes cultured in resting conditions but were defective when chondrocytes were proliferating. S-EVs were also impaired in their capacity to polarize synovial macrophages towards an anti-inflammatory phenotype. A differential protein cargo mainly related to inflammation and senescence was detected in S-EVs and H-EVs. Using the collagenase-induced OA model, we found that contrary to H-EVs, S-EVs could not protect mice from cartilage damage and joint calcifications, and were less efficient in protecting subchondral bone degradation. In addition, S-EVs induced a pro-catabolic and pro-inflammatory gene signature in the joints of mice shortly after injection, while H-EVs decreased hypertrophic, catabolic and inflammatory pathways. In conclusion, S-EVs are functionally impaired and cannot protect mice from developing OA.


Asunto(s)
Senescencia Celular , Condrocitos , Vesículas Extracelulares , Células Madre Mesenquimatosas , Osteoartritis , Células Madre Mesenquimatosas/metabolismo , Vesículas Extracelulares/metabolismo , Osteoartritis/metabolismo , Osteoartritis/patología , Animales , Humanos , Ratones , Condrocitos/metabolismo , Células Cultivadas , Masculino , Ratones Endogámicos C57BL , Daño del ADN
3.
J Autoimmun ; 121: 102660, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34020253

RESUMEN

Systemic sclerosis (SSc) is a potentially lethal disease with no curative treatment. Mesenchymal stromal cells (MSCs) have proved efficacy in SSc but no data is available on MSC-derived extracellular vesicles (EVs) in this multi-organ fibrosis disease. Small size (ssEVs) and large size EVs (lsEVs) were isolated from murine MSCs or human adipose tissue-derived MSCs (ASCs). Control antagomiR (Ct) or antagomiR-29a-3p (A29a) were transfected in MSCs and ASCs before EV production. EVs were injected in the HOCl-induced SSc model at day 21 and euthanasized at day 42. We found that both ssEVs and lsEVs were effective to slow-down the course of the disease. All disease parameters improved in skin and lungs. Interestingly, down-regulating miR-29a-3p in MSCs totally abolished therapeutic efficacy. Besides, we demonstrated a similar efficacy of human ASC-EVs and importantly, EVs from A29a-transfected ASCs failed to improve skin fibrosis. We identified Dnmt3a, Pdgfrbb, Bcl2, Bcl-xl as target genes of miR-29a-3p whose regulation was associated with skin fibrosis improvement. Our study highlights the therapeutic role of miR-29a-3p in SSc and the importance of regulating methylation and apoptosis.


Asunto(s)
Vesículas Extracelulares/trasplante , Células Madre Mesenquimatosas/inmunología , MicroARNs/metabolismo , Esclerodermia Sistémica/terapia , Animales , Apoptosis/genética , Apoptosis/inmunología , Metilación de ADN/inmunología , ADN Metiltransferasa 3A/genética , ADN Metiltransferasa 3A/metabolismo , Modelos Animales de Enfermedad , Vesículas Extracelulares/metabolismo , Femenino , Regulación de la Expresión Génica/inmunología , Humanos , Ácido Hipocloroso/administración & dosificación , Ácido Hipocloroso/toxicidad , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Esclerodermia Sistémica/inducido químicamente , Esclerodermia Sistémica/inmunología
4.
Clin Exp Rheumatol ; 39(5): 982-987, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33427619

RESUMEN

OBJECTIVES: NKG2D ligands (NKG2DLs) are stress-inducible molecules involved in multiple inflammatory settings. In this work, we quantified MICA, an NKG2DL, in the synovial fluid of patients suffering various arthritides and measured Nkg2dLs gene expression in murine models of acute joint inflammation. METHODS: Soluble MICA (sMICA) was quantified by ELISA is synovial fluids harvested from patients suffering osteoarthritis, rheumatoid arthritis, psoriatic arthritis, calcium pyrophosphate crystal arthritis, urate crystal arthritis and reactive arthritis. Transcripts encoding murine NKG2DLs were quantified by RT-qPCR in the joints of mouse models of rheumatoid arthritis, urate crystal arthritis and osteoarthritis. RESULTS: Marked overproduction of sMICA was observed in the synovial fluid of RA patients. Mouse studies highlighted the complex transcriptional regulation of Nkg2d ligands encoding genes depending on the inflammatory setting and microenvironment CONCLUSIONS: sMICA quantification could be an interesting biomarker to identify acute inflammation in RA patients in whom classical markers (i.e. anti-citrullinated protein antibodies, ACPA) are undetectable.


Asunto(s)
Artritis Reumatoide , Subfamilia K de Receptores Similares a Lectina de Células NK , Animales , Anticuerpos Antiproteína Citrulinada , Artritis Reumatoide/genética , Humanos , Ligandos , Ratones , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Líquido Sinovial
5.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202139

RESUMEN

Systemic sclerosis (SSc) is a complex disorder resulting from dysregulated interactions between the three main pathophysiological axes: fibrosis, immune dysfunction, and vasculopathy, with no specific treatment available to date. Adipose tissue-derived mesenchymal stromal cells (ASCs) and their extracellular vesicles (EVs) have proved efficacy in pre-clinical murine models of SSc. However, their precise action mechanism is still not fully understood. Because of the lack of availability of fibroblasts isolated from SSc patients (SSc-Fb), our aim was to determine whether a TGFß1-induced model of human myofibroblasts (Tß-Fb) could reproduce the characteristics of SSc-Fb and be used to evaluate the anti-fibrotic function of ASCs and their EVs. We found out that Tß-Fb displayed the main morphological and molecular features of SSc-Fb, including the enlarged hypertrophic morphology and expression of several markers associated with the myofibroblastic phenotype. Using this model, we showed that ASCs were able to regulate the expression of most myofibroblastic markers on Tß-Fb and SSc-Fb, but only when pre-stimulated with TGFß1. Of interest, ASC-derived EVs were more effective than parental cells for improving the myofibroblastic phenotype. In conclusion, we provided evidence that Tß-Fb are a relevant model to mimic the main characteristics of SSc fibroblasts and investigate the mechanism of action of ASCs. We further reported that ASC-EVs are more effective than parental cells suggesting that the TGFß1-induced pro-fibrotic environment may alter the function of ASCs.


Asunto(s)
Tejido Adiposo/citología , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Esclerodermia Sistémica/etiología , Esclerodermia Sistémica/metabolismo , Animales , Biomarcadores , Comunicación Celular , Susceptibilidad a Enfermedades , Fibroblastos/metabolismo , Fibrosis , Humanos , Inmunofenotipificación , Células Madre Mesenquimatosas/citología , Ratones , Miofibroblastos/metabolismo , Esclerodermia Sistémica/patología , Factor de Crecimiento Transformador beta1/metabolismo
7.
Stem Cells ; 34(2): 483-92, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26661518

RESUMEN

The role of interleukin 1 receptor antagonist (IL1RA) in mediating the immunosuppressive effect of mesenchymal stem/stromal cells (MSCs) has been reported in several studies. However, how MSC-derived IL1RA influences the host response has not been clearly investigated. We therefore derived MSCs from the bone marrow of IL1RA knockout mice and evaluated their immunosuppressive effect on different immune cell subsets. IL1RA deficient (IL1RA(-/-) ) or wild type (wt) MSCs inhibited to the same extend the proliferation of T lymphocytes. On the contrary, IL1RA(-/-) MSCs were less effective than wt MSCs to induce in vitro the macrophage polarization from M1 to M2 phenotype secreting IL10 and exerting a suppressive effect on CD4(+) T cells. Moreover compared with wt MSCs, IL1RA(-/-) MSCs did not efficiently support the survival of quiescent B lymphocytes and block their differentiation toward CD19(+) CD138(+) plasmablasts secreting IgG antibodies. The effectiveness of IL1RA secreted by MSCs in controlling inflammation was further shown in vivo using the collagen-induced arthritis murine model. MSCs lacking IL1RA expression were unable to protect mice from arthritic progression and even worsened clinical signs, as shown by higher arthritic score and incidence than control arthritic mice. IL1RA(-/-) MSCs were not able to decrease the percentage of Th17 lymphocytes and increase the percentage of Treg cells as well as decreasing the differentiation of B cells toward plasmablasts. Altogether, our results provide evidence of the key role of IL1RA secreted by MSCs to both control the polarization of macrophages toward a M2 phenotype and inhibit B cell differentiation in vivo.


Asunto(s)
Linfocitos B/metabolismo , Diferenciación Celular , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Macrófagos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Animales , Artritis Experimental/inmunología , Artritis Experimental/metabolismo , Linfocitos B/inmunología , Proteína Antagonista del Receptor de Interleucina 1/inmunología , Macrófagos/inmunología , Células Madre Mesenquimatosas/inmunología , Ratones , Ratones Noqueados , Células Th17/inmunología , Células Th17/metabolismo
8.
Stem Cells ; 34(2): 456-69, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26528946

RESUMEN

Recently, a noninvasive and highly proliferative stem cell population from menstrual blood called MenSCs has been identified. Despite their use in clinical studies, their immunomodulatory properties have not yet been investigated. In this context, we studied the immunosuppressive properties of MenSCs in comparison with the well-characterized bone marrow derived-MSCs (BM-MSCs). Using an in vitro proliferation assays, we showed that MenSCs displayed a lower suppressive effect on peripheral blood mononuclear cells and in particular on the proinflammatory CD4(+) IFN-γ(+) and CD8(+) IFNγ(+) cells than BM-MSCs. Moreover, compared to BM-MSCs, MenSCs activated with IFN-γ and IL-1ß produced lower amounts of immunosuppressive factors such as IDO, PDL-1, PGE2, and Activin A and exhibited a substantial lower expression level of IFN-γ receptor subunits. In the collagen induced arthritis model, while BM-MSCs administration resulted in a potent therapeutic effect associated with a significant decrease of proinflammatory T cell frequency in the lymph nodes, MenSCs injection did not. In contrast, in the xeno-GVHD model, only MenSCs administration significantly increased the survival of mice. This beneficial effect mediated by MenSCs was associated with a higher capacity to migrate into the intestine and liver and not to their anti-inflammatory capacities. All together our results demonstrate for the first time that the therapeutic potential of MSC in the experimental xeno-GVHD model is independent of their immunosuppressive properties. These findings should be taken into consideration for the development of safe and effective cell therapies.


Asunto(s)
Artritis Experimental/terapia , Enfermedad Injerto contra Huésped/terapia , Ciclo Menstrual , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/inmunología , Tolerancia al Trasplante , Adolescente , Adulto , Artritis Experimental/inmunología , Artritis Experimental/patología , Femenino , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/patología , Xenoinjertos , Humanos , Masculino , Persona de Mediana Edad
9.
Int J Mol Sci ; 18(4)2017 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-28441721

RESUMEN

Extracellular vesicles (EVs) are important mediators of cell-to-cell communication pathways via the transport of proteins, mRNA, miRNA and lipids. There are three main types of EVs, exosomes, microparticles and apoptotic bodies, which are classified according to their size and biogenesis. EVs are secreted by all cell types and their function reproduces that of the parental cell. They are involved in many biological processes that regulate tissue homeostasis and physiopathology of diseases. In rheumatic diseases, namely osteoarthritis (OA) and rheumatoid arthritis (RA), EVs have been isolated from synovial fluid and shown to play pathogenic roles contributing to progression of both diseases. By contrast, EVs may have therapeutic effect via the delivery of molecules that may stop disease evolution. In particular, EVs derived from mesenchymal stem cells (MSCs) reproduce the main functions of the parental cells and therefore represent the ideal type of EVs for modulating the course of either disease. The aim of this review is to discuss the role of EVs in OA and RA focusing on their potential pathogenic effect and possible therapeutic options. Special attention is given to MSCs and MSC-derived EVs for modulating OA and RA progression with the perspective of developing innovative therapeutic strategies.


Asunto(s)
Artritis Reumatoide/patología , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Animales , Artritis Reumatoide/terapia , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/trasplante , Exosomas/metabolismo , Vesículas Extracelulares/trasplante , Humanos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Osteoartritis/patología , Osteoartritis/terapia
10.
J Autoimmun ; 70: 31-9, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27052182

RESUMEN

OBJECTIVES: Displaying immunosuppressive and trophic properties, mesenchymal stem/stromal cells (MSC) are being evaluated as promising therapeutic options in a variety of autoimmune and degenerative diseases. Although benefits may be expected in systemic sclerosis (SSc), a rare autoimmune disease with fibrosis-related mortality, MSC have yet to be evaluated in this specific condition. While autologous approaches could be inappropriate because of functional alterations in MSC from patients, the objective of the present study was to evaluate allogeneic and xenogeneic MSC in the HOCl-induced model of diffuse SSc. We also questioned the source of human MSC and compared bone marrow- (hBM-MSC) and adipose-derived MSC (hASC). METHODS: HOCl-challenged BALB/c mice received intravenous injection of BM-MSC from syngeneic BALB/c or allogeneic C57BL/6 mice, and xenogeneic hBM-MSC or hASC (3 donors each). Skin thickness was measured during the experiment. At euthanasia, histology, immunostaining, collagen determination and RT-qPCR were performed in skin and lungs. RESULTS: Xenogeneic hBM-MSC were as effective as allogeneic or syngeneic BM-MSC in decreasing skin thickness, expression of Col1, Col3, α-Sma transcripts, and collagen content in skin and lungs. This anti-fibrotic effect was not associated with MSC migration to injured skin or with long-term MSC survival. Interestingly, compared with hBM-MSC, hASC were significantly more efficient in reducing skin fibrosis, which was related to a stronger reduction of TNFα, IL1ß, and enhanced ratio of Mmp1/Timp1 in skin and lung tissues. CONCLUSIONS: Using primary cells isolated from 3 murine and 6 human individuals, this preclinical study demonstrated similar therapeutic effects using allogeneic or xenogeneic BM-MSC while ASC exerted potent anti-inflammatory and remodeling properties. This sets the proof-of-concept prompting to evaluate the therapeutic efficacy of allogeneic ASC in SSc patients.


Asunto(s)
Tejido Adiposo/citología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Esclerodermia Sistémica/metabolismo , Esclerodermia Sistémica/patología , Animales , Biomarcadores , Técnicas de Cultivo de Célula , Movimiento Celular , Células Cultivadas , Modelos Animales de Enfermedad , Fibrosis , Expresión Génica , Humanos , Pulmón/metabolismo , Pulmón/patología , Células Madre Mesenquimatosas/citología , Ratones , Esclerodermia Sistémica/etiología , Esclerodermia Sistémica/terapia , Piel/metabolismo , Piel/patología
11.
J Biol Chem ; 289(12): 8402-12, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24505142

RESUMEN

Mesenchymal stem cells (MSCs) are considered for cartilage engineering given their ability to differentiate into chondrocytes. Chondrogenic differentiation of MSCs is currently triggered by micromass culture in the presence of a member of the TGF-ß superfamily. However, the main constituents of the cartilaginous matrix, aggrecan and type II collagen, are degraded at the end of the differentiation process through induction of matrix metallopeptidase (MMP)13. We hypothesized that MSCs undergoing chondrogenic differentiation produce an intermediate cytokine that triggers this matrix remodeling. Analysis of transcriptomic data identified angiopoietin-like 4 (ANGPTL4) as one of the most strongly up-regulated gene encoding a secreted factor during TGF-ß-induced chondrogenesis. To gain insight into the role of ANGPTL4 during chondrogenesis, we used recombinant ANGPTL4 as well as a RNA interference approach. Addition of exogenous ANGPTL4 during the course of TGF-ß-induced differentiation reduced the mRNA levels of aggrecan and type II collagen, although it increased those of MMP1 and MMP13. Accordingly, deposition of aggrecan and total collagens was diminished, whereas release of MMP1 and MMP13 was increased. Conversely, transfection of MSCs with an siRNA targeting ANGPTL4 prior to induction of chondrogenesis increased expression of type II collagen and aggrecan, whereas it repressed that of MMP1, MMP3, and MMP13. A neutralizing antibody against integrin αVß5, a known receptor for ANGPTL4, mimicked some of the effects observed after siRNA-mediated ANGPTL4 silencing. Our data provide evidence that ANGPTL4 promotes cartilage matrix remodeling by inhibiting expression of its two key components and by up-regulating the level of certain MMPs.


Asunto(s)
Angiopoyetinas/metabolismo , Cartílago/fisiología , Diferenciación Celular , Condrocitos/citología , Condrogénesis , Células Madre Mesenquimatosas/citología , Agrecanos/genética , Agrecanos/metabolismo , Proteína 4 Similar a la Angiopoyetina , Angiopoyetinas/genética , Cartílago/citología , Cartílago/metabolismo , Células Cultivadas , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Interferencia de ARN , Factor de Crecimiento Transformador beta/metabolismo , Regulación hacia Arriba
12.
Arthritis Rheum ; 65(5): 1271-81, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23613363

RESUMEN

OBJECTIVE: To examine the effect of different sources of good manufacturing practice clinical grade adipose-derived mesenchymal stem cells (AD-MSCs) on inflammatory factors in osteoarthritic (OA) chondrocytes and synoviocytes. METHODS: AD-MSCs from infrapatellar Hoffa fat, subcutaneous (SC) hip fat, and SC abdominal fat were cocultured in Transwells with chondrocytes or synoviocytes. Inflammatory factors (interleukin-1ß [IL-1ß], tumor necrosis factor α, IL-6, CXCL1/growth-related oncogene α, CXCL8/IL-8, CCL2/monocyte chemotactic protein 1, CCL3/macrophage inflammatory protein 1α, and CCL5/RANTES) were evaluated by quantitative reverse transcription-polymerase chain reaction or multiplex bead-based immunoassay. The role of different immunomodulators was analyzed. RESULTS: All the inflammatory factors analyzed were down-modulated at the messenger RNA or protein level independently by all 3 AD-MSC sources or by allogeneic AD-MSCs used in coculture with chondrocytes or synoviocytes. Inflammatory factor down-modulation was observed only when AD-MSCs were cocultured with chondrocytes or synoviocytes that produced high levels of inflammatory factors, but no effect was observed in cells that produced low levels of those factors, thus highlighting a dependence of the AD-MSC effect on existing inflammation. The immunomodulators IL-10, IL-1 receptor antagonist, fibroblast growth factor 2, indoleamine 2,3-dioxygenase 1, and galectin 1 were not involved in AD-MSC effects, whereas the cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2 ) pathway exerted a role in the mechanism of antiinflammatory AD-MSC action. CONCLUSION: The antiinflammatory effects of AD-MSCs are probably not dependent on AD-MSC adipose tissue sources and donors but rather on the inflammatory status of OA chondrocytes and synoviocytes. AD-MSCs seem to be able to sense and respond to the local environment. Even though a combination of different molecules may be involved in AD-MSC effects, the COX-2/PGE2 pathway may play a role, suggesting that AD-MSCs may be useful for therapies in osteoarticular diseases.


Asunto(s)
Adipocitos/citología , Condrocitos/citología , Dinoprostona/metabolismo , Células Madre Mesenquimatosas/citología , Osteoartritis/patología , Membrana Sinovial/citología , Anciano , Biomarcadores/metabolismo , Cartílago Articular/patología , Células Cultivadas , Quimiocinas/genética , Quimiocinas/metabolismo , Condrocitos/metabolismo , Técnicas de Cocultivo , Regulación hacia Abajo , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Membrana Sinovial/metabolismo
13.
Arthritis Rheum ; 65(7): 1786-94, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23553439

RESUMEN

OBJECTIVE: Mesenchymal stem cells (MSCs) represent a promising tool for cell therapy for several disorders, among them the osteoarticular diseases. For such clinical applications, intraarticular (IA) injection of MSCs may be favored for higher levels of safety and targeting of specific joints. Although the safety of intravenous (IV) administration of MSCs has been reported in a number of clinical trials, the safety and biodistribution of MSCs after IA injection have not been tested. Our objective was to assess the toxicity of clinical-grade human adipose-derived MSCs (AD-MSCs), as well as their biodistribution, after IA injection into SCID mice. METHODS: SCID mice received IA or IV administration of 10(6) human AD-MSCs. Several tissues were recovered at different time points and processed for histologic assessment or real-time polymerase chain reaction (PCR) analysis. A highly sensitive assay was used to monitor the distribution of AD-MSCs, based on amplification of human-specific Alu sequences. RESULTS: Absence of toxicity was observed after AD-MSC infusion. Alu PCR assay revealed a high sensitivity (1 human AD-MSC/10(5) murine cells), with a large linear range (1-5 × 10(4) /10(5) murine cells). Importantly, 15% of the IA-injected AD-MSCs were detectable in the joint for the first month and 1.5% of the AD-MSCs engrafted over the long term, at least 6 months. AD-MSCs were observed in the injected joints and in areas of tissue referred to as stem cell niches, such as the bone marrow, adipose tissue, and muscle. CONCLUSION: These data support the feasibility and safety of using IA delivery of human AD-MSCs in the treatment of rheumatic diseases that affect the joints.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Tejido Adiposo/citología , Animales , Células Cultivadas , Femenino , Humanos , Infusiones Intravenosas , Inyecciones Intraarticulares , Masculino , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Ratones , Ratones SCID
14.
Arthritis Rheum ; 64(11): 3604-13, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22961401

RESUMEN

OBJECTIVE: In experimental collagenase-induced osteoarthritis (OA) in the mouse, synovial lining macrophages are crucial in mediating joint destruction. It was recently shown that adipose-derived stem cells (ASCs) express immunosuppressive characteristics. This study was undertaken to explore the effect of intraarticular injection of ASCs on synovial lining thickness and its relation to joint pathology in experimental mouse OA. METHODS: ASCs were isolated from fat surrounding the inguinal lymph nodes and cultured for 2 weeks. Experimental OA was induced by injection of collagenase into the knee joints of C57BL/6 mice. OA phenotypes were measured within 8 weeks after induction. Histologic analysis was performed, and synovial thickening, enthesophyte formation, and cartilage destruction were measured in the knee joint. RESULTS: ASCs were injected into the knee joints of mice 7 days after the induction of collagenase-induced OA. On day 1, green fluorescent protein-labeled ASCs were attached to the lining layer in close contact with macrophages. Thickening of the synovial lining, formation of enthesophytes associated with medial collateral ligaments, and formation of enthesophytes associated with cruciate ligaments were significantly inhibited on day 42 after ASC treatment, by 31%, 89%, and 44%, respectively. Destruction of cartilage was inhibited on day 14 (65%) and day 42 (35%). In contrast to early treatment, injection of ASCs on day 14 after OA induction showed no significant effect on synovial activation or joint pathology on day 42. CONCLUSION: These findings indicate that a single injection of ASCs into the knee joints of mice with early-stage collagenase-induced OA inhibits synovial thickening, formation of enthesophytes associated with ligaments, and cartilage destruction.


Asunto(s)
Condrocitos/inmunología , Articulación de la Rodilla/inmunología , Osteoartritis de la Rodilla/inmunología , Osteoartritis de la Rodilla/terapia , Trasplante de Células Madre/métodos , Tejido Adiposo/citología , Animales , Ligamento Cruzado Anterior/inmunología , Ligamento Cruzado Anterior/patología , Cartílago Articular/inmunología , Cartílago Articular/patología , Movimiento Celular/inmunología , Condrocitos/patología , Condrogénesis/inmunología , Colagenasas/farmacología , Ligamentos Colaterales/inmunología , Ligamentos Colaterales/patología , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inyecciones Intraarticulares , Articulación de la Rodilla/patología , Ratones , Ratones Endogámicos C57BL , Osteoartritis de la Rodilla/inducido químicamente , Ligamento Cruzado Posterior/patología , Membrana Sinovial/inmunología , Membrana Sinovial/patología
15.
Sci Rep ; 13(1): 7783, 2023 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-37179423

RESUMEN

Osteoarthritis (OA) is the most prevalent rheumatic disease and a fast growing cause of disability. Current pharmacological treatments include antalgics and non-steroid anti-inflammatory drugs to control pain and inflammation as well as slow acting drugs such as intra-articular (IA) administration of hyaluronic acid. Oral supplementation or diet rich in polyunsaturated free fatty acids are proposed but evidence for benefit is still under debate. We here investigated the therapeutic potential of ARA 3000 BETA, an injectable copolymer of fatty acids, at the structural level in OA. Collagenase-induced osteoarthritis model was induced in C57BL/6 mice by collagenase injection into knee joint. Mice were treated with one or two IA or four intra-muscular injections (IM) of ARA 3000 BETA. At sacrifice, knee joints were recovered for cartilage analysis by confocal laser scanning microscopy (CLSM) and bone analysis by micro-computed tomography system. OA histological scoring was performed after safranin O/fast green staining. Histological analysis revealed a protective effect against cartilage degradation in treated knee joints after IM and IA administration. This was confirmed by CLSM with a significant improvement of all articular cartilage parameters, including thickness, volume and surface degradation whatever the administration route. A slight protective effect was also noticed on subchondral bone parameters and knee joint calcification after IM administration and to a lesser extent, two IA injections. We demonstrated the therapeutic efficacy of injectable ARA 3000 BETA in OA with a protection against cartilage and bone alterations providing the proof-of-concept that clinical translation might be envisioned to delay disease progression.


Asunto(s)
Cartílago Articular , Osteoartritis de la Rodilla , Osteoartritis , Ratones , Animales , Ácidos Grasos/metabolismo , Microtomografía por Rayos X , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Osteoartritis/patología , Colagenasas/metabolismo , Cartílago Articular/patología , Osteoartritis de la Rodilla/patología , Inyecciones Intraarticulares
16.
Nat Rev Rheumatol ; 19(11): 682-694, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37666995

RESUMEN

The incidence of rheumatic diseases such as rheumatoid arthritis and osteoarthritis and injuries to articular cartilage that lead to osteochondral defects is predicted to rise as a result of population ageing and the increase in high-intensity physical activities among young and middle-aged people. Current treatments focus on the management of pain and joint functionality to improve the patient's quality of life, but curative strategies are greatly desired. In the past two decades, the therapeutic value of mesenchymal stromal cells (MSCs) has been evaluated because of their regenerative potential, which is mainly attributed to the secretion of paracrine factors. Many of these factors are enclosed in extracellular vesicles (EVs) that reproduce the main functions of parental cells. MSC-derived EVs have anti-inflammatory, anti-apoptotic as well as pro-regenerative activities. Research on EVs has gained considerable attention as they are a potential cell-free therapy with lower immunogenicity and easier management than whole cells. MSC-derived EVs can rescue the pathogenetic phenotypes of chondrocytes and exert a protective effect in animal models of rheumatic disease. To facilitate the therapeutic use of EVs, appropriate cell sources for the production of EVs with the desired biological effects in each disease should be identified. Production and isolation of EVs should be optimized, and pre-isolation and post-isolation modifications should be considered to maximize the disease-modifying potential of the EVs.


Asunto(s)
Artritis Reumatoide , Vesículas Extracelulares , Células Madre Mesenquimatosas , Osteoartritis , Animales , Humanos , Persona de Mediana Edad , Calidad de Vida
17.
J Biomed Mater Res A ; 111(7): 1067-1089, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36583681

RESUMEN

Articular cartilage (AC) is the thin tissue that covers the long bone ends in the joints and that ensures the transmission of forces between adjacent bones while allowing nearly frictionless movements between them. AC repair is a technologic and scientific challenge that has been addressed with numerous approaches. A major deadlock is the capacity to take in account its complex mechanical properties in repair strategies. In this review, we first describe the major mechanical behaviors of AC for the non-specialists. Then, we show how researchers have progressively identified specific mechanical parameters using mathematical models. There are still gaps in our understanding of some of the observations concerning AC biomechanical properties, particularly the differences in extracellular matrix stiffness measured at the microscale and at the millimetric scale. Nevertheless, for bioengineering applications, AC repair strategies must take into account what are commonly considered the main mechanical features of cartilage: its ability to withstand high stresses through three main behaviors (elasticity, poroelasticity and swelling). Finally, we emphasize that future studies need to investigate AC mechanical properties at different scales, particularly the gradient of mechanical properties around cells and across the cartilage depth, and the differences in mechanical properties at different scales. This multi-scale approach could greatly enhance the success of AC restorative approaches.


Asunto(s)
Cartílago Articular , Ingeniería de Tejidos , Fenómenos Biomecánicos , Matriz Extracelular , Elasticidad , Estrés Mecánico
18.
Hemasphere ; 7(7): e924, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37388924

RESUMEN

Hemophilia is a rare congenital bleeding disorder caused by deficiency in coagulation factors VIII or IX, which is treated with prophylactic clotting factor concentrates. Nevertheless despite prophylaxis, spontaneous joint bleedings or hemarthroses still occur. The recurrent hemarthroses lead to progressive degradation of the joints and severe hemophilic arthropathy (HA) in patients with moderate and even mild forms of the disease. In absence of disease modifying treatment to stop or even delay HA progression, we aimed at evaluating the therapeutic potential of mesenchymal stromal cells (MSCs)-based therapy. We first developed a relevant and reproducible in vitro model of hemarthrosis relying on blood exposure of primary murine chondrocytes. We found that 30% whole blood for 4 days allowed to induce the characteristic features of hemarthrosis including low survival of chondrocytes, apoptosis induction, and dysregulation of chondrocyte markers in favor of a catabolic and inflammatory phenotype. We then evaluated the potential therapeutic effects of MSCs in this model using different conditions of coculture. Addition of MSCs improved the survival of chondrocytes when added either during the resolution or the acute phases of hemarthrosis and exerted a chondroprotective effect by enhancing the expression of anabolic markers, and reducing the expression of catabolic and inflammatory markers. We here provide the first proof-of-concept that MSCs may exert a therapeutic effect on chondrocytes under hemarthrosis conditions using a relevant in vitro model, thereby confirming a potential therapeutic interest for patients with recurrent joint bleedings.

19.
Stem Cell Res Ther ; 14(1): 226, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37649121

RESUMEN

BACKGROUND: Articular cartilage (AC)'s main function is to resist to a stressful mechanical environment, and chondrocytes are responding to mechanical stress for the development and homeostasis of this tissue. However, current knowledge on processes involved in response to mechanical stimulation is still limited. These mechanisms are commonly investigated in engineered cartilage models where the chondrocytes are included in an exogeneous biomaterial different from their natural extracellular matrix. The aim of the present study is to better understand the impact of mechanical stimulation on mesenchymal stromal cells (MSCs)-derived chondrocytes generated in their own extracellular matrix. METHODS: A fluidic custom-made device was used for the mechanical stimulation of cartilage micropellets obtained from human MSCs by culture in a chondrogenic medium for 21 days. Six micropellets were positioned into the conical wells of the device chamber and stimulated with different signals of positive pressure (amplitude, frequency and duration). A camera was used to record the sinking of each micropellet into their cone, and micropellet deformation was analyzed using a finite element model. Micropellets were harvested at different time points after stimulation for RT-qPCR and histology analysis. RESULTS: Moderate micropellet deformation was observed during stimulation with square pressure signals as mean von Mises strains between 6.39 and 14.35% were estimated for amplitudes of 1.75-14 kPa superimposed on a base pressure of 50% of the amplitude. The compression, tension and shear observed during deformation did not alter micropellet microstructure as shown by histological staining. A rapid and transient increase in the expression of chondrocyte markers (SOX9, AGG and COL2B) was measured after a single 30-min stimulation with a square pressure signal of 3.5 kPa amplitude superimposed on a minimum pressure of 1.75 kPa, at 1 Hz. A small change of 1% of cyclical deformations when using a square pressure signal instead of a constant pressure signal induced a fold change of 2 to 3 of chondrogenic gene expression. Moreover, the expression of fibrocartilage (COL I) or hypertrophic cartilage (COL X, MMP13 and ADAMTS5) was not significantly regulated, except for COL X. CONCLUSIONS: Our data demonstrate that the dynamic deformation of cartilage micropellets by fluidic-based compression modulates the expression of chondrocyte genes responsible for the production of a cartilage-like extracellular matrix. This lays the foundations for further investigating the chondrocyte mechanobiology and the cartilage growth under mechanical stimulation.


Asunto(s)
Cartílago , Condrocitos , Humanos , Materiales Biocompatibles , Condrogénesis/genética , Expresión Génica
20.
Biomater Adv ; 147: 213321, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36774819

RESUMEN

Biopolymers are ideal candidates for the development of hydrogels for tissue engineering applications. However, chemical modifications are required to further improve their mechanical properties, in particular to cross-link them for long-lasting applications or biofabrication. Herein, we developed a novel gelatin-based hydrogel precursor, "GelmSi" which consist on modified gelatin with triethoxysilyl groups. Gelatin was chosen as starting material because of its biocompatibility and bioactivity, favouring cell adhesion and migration. Alkoxysilane moieties were introduced in a controlled manner on the lysine side chains of gelatin to obtain a hybrid precursor which reacts in physiological conditions, forming covalent siloxane bonds and allowing the formation of a three-dimensional chemical network. On the contrary to unmodified gelatin, siloxane covalent network dramatically increases the stiffness and the thermal stability of the resulting gelatin-based hydrogel, making it suitable for cell encapsulation and cell culture. The biorthogonality and versatility of the GelmSi hybrid hydrogel unlock a broad range of gelatin-based bioengineering applications.


Asunto(s)
Gelatina , Hidrogeles , Gelatina/química , Siloxanos , Ingeniería de Tejidos/métodos , Bioingeniería
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA