RESUMEN
Calcium (Ca2+) signaling is critical for cell function and cell survival. Mitochondria play a major role in regulating the intracellular Ca2+ concentration ([Ca2+]i). Mitochondrial Ca2+ uptake is an important determinant of cell fate and governs respiration, mitophagy/autophagy, and the mitochondrial pathway of apoptosis. Mitochondrial Ca2+ uptake occurs via the mitochondrial Ca2+ uniporter (MCU) complex. This review summarizes the present knowledge on the function of MCU complex, regulation of MCU channel, and the role of MCU in Ca2+ homeostasis and human disease pathogenesis. The channel core consists of four MCU subunits and essential MCU regulators (EMRE). Regulatory proteins that interact with them include mitochondrial Ca2+ uptake 1/2 (MICU1/2), MCU dominant-negative ß-subunit (MCUb), MCU regulator 1 (MCUR1), and solute carrier 25A23 (SLC25A23). In addition to these proteins, cardiolipin, a mitochondrial membrane-specific phospholipid, has been shown to interact with the channel core. The dynamic interplay between the core and regulatory proteins modulates MCU channel activity after sensing local changes in [Ca2+]i, reactive oxygen species, and other environmental factors. Here, we highlight the structural details of the human MCU heteromeric assemblies and their known roles in regulating mitochondrial Ca2+ homeostasis. MCU dysfunction has been shown to alter mitochondrial Ca2+ dynamics, in turn eliciting cell apoptosis. Changes in mitochondrial Ca2+ uptake have been implicated in pathological conditions affecting multiple organs, including the heart, skeletal muscle, and brain. However, our structural and functional knowledge of this vital protein complex remains incomplete, and understanding the precise role for MCU-mediated mitochondrial Ca2+ signaling in disease requires further research efforts.
Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio , Metabolismo Energético , Mitocondrias/metabolismo , Animales , Apoptosis , Canales de Calcio/química , Canales de Calcio/efectos de los fármacos , Canales de Calcio/genética , Señalización del Calcio/efectos de los fármacos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Metabolismo Energético/efectos de los fármacos , Regulación de la Expresión Génica , Humanos , Potencial de la Membrana Mitocondrial , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/patología , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Terapia Molecular Dirigida , Enfermedades Musculares/tratamiento farmacológico , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Conformación Proteica , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-ActividadRESUMEN
Calcium (Ca2+) is a universal signaling ion that is essential for the life and death processes of all eukaryotes. In humans, numerous cell stimulation pathways lead to the mobilization of sarco/endoplasmic reticulum (S/ER) stored Ca2+, resulting in the propagation of Ca2+ signals through the activation of processes, such as store-operated Ca2+ entry (SOCE). SOCE provides a sustained Ca2+ entry into the cytosol; moreover, the uptake of SOCE-mediated Ca2+ by mitochondria can shape cytosolic Ca2+ signals, function as a feedback signal for the SOCE molecular machinery, and drive numerous mitochondrial processes, including adenosine triphosphate (ATP) production and distinct cell death pathways. In recent years, tremendous progress has been made in identifying the proteins mediating these signaling pathways and elucidating molecular structures, invaluable for understanding the underlying mechanisms of function. Nevertheless, there remains a disconnect between using this accumulating protein structural knowledge and the design of new research tools and therapies. In this review, we provide an overview of the Ca2+ signaling pathways that are involved in mediating S/ER stored Ca2+ release, SOCE, and mitochondrial Ca2+ uptake, as well as pinpoint multiple levels of crosstalk between these pathways. Further, we highlight the significant protein structures elucidated in recent years controlling these Ca2+ signaling pathways. Finally, we describe a simple strategy that aimed at applying the protein structural data to initiating drug design.
Asunto(s)
Señalización del Calcio , Descubrimiento de Drogas/métodos , Animales , Canales de Calcio/química , Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Humanos , Unión ProteicaAsunto(s)
Calcio , Calmodulina , Arritmias Cardíacas/genética , Calcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Motivos EF Hand , Humanos , MutaciónRESUMEN
The mitochondrial calcium (Ca2+) uniporter (MCU) complex is regulated via integration of the MCU dominant negative beta subunit (MCUb), a low conductance paralog of the main MCU pore forming protein. The MCU amino (N)-terminal domain (NTD) also modulates channel function through cation binding to the MCU regulating acidic patch (MRAP). MCU and MCUb have high sequence similarities, yet the structural and functional roles of MCUb-NTD remain unknown. Here, we report that MCUb-NTD exhibits α-helix/ß-sheet structure with a high thermal stability, dependent on protein concentration. Remarkably, MCU- and MCUb-NTDs heteromerically interact with â¼nM affinity, increasing secondary structure and stability and structurally perturbing MRAP. Further, we demonstrate MCU and MCUb co-localization is suppressed upon NTD deletion concomitant with increased mitochondrial Ca2+ uptake. Collectively, our data show that MCU:MCUb NTD tight interactions are promoted by enhanced regular structure and stability, augmenting MCU:MCUb co-localization, lowering mitochondrial Ca2+ uptake and implicating an MRAP-sensing mechanism.