Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 608(7924): 692-698, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35768016

RESUMEN

Single-aperture cavities are a key component of lasers that are instrumental for the amplification and emission of a single light mode. However, the appearance of high-order transverse modes as the size of the cavities increases has frustrated efforts to scale-up cavities while preserving single-mode operation since the invention of the laser six decades ago1-8. A suitable physical mechanism that allows single-mode lasing irrespective of the cavity size-a 'scale invariant' cavity or laser-has not been identified yet. Here we propose and demonstrate experimentally that open-Dirac electromagnetic cavities with linear dispersion-which in our devices are realized by a truncated photonic crystal arranged in a hexagonal pattern-exhibit unconventional scaling of losses in reciprocal space, leading to single-mode lasing that is maintained as the cavity is scaled up in size. The physical origin of this phenomenon lies in the convergence of the complex part of the free spectral range in open-Dirac cavities towards a constant governed by the loss rates of distinct Bloch bands, whereas for common cavities it converges to zero as the size grows, leading to inevitable multimode emission. An unconventional flat-envelope fundamental mode locks all unit cells in the cavity in phase, leading to single-mode lasing. We name such sources Berkeley surface-emitting lasers (BerkSELs) and demonstrate that their far-field corresponds to a topological singularity of charge two, in agreement with our theory. Open-Dirac cavities unlock avenues for light-matter interaction and cavity quantum electrodynamics.

2.
Opt Lett ; 45(13): 3653-3656, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32630922

RESUMEN

In this Letter, we present a design strategy for the realization of electrically powered bound states in the continuum (BIC) lasers. Despite growing attention of the optics community for BICs, practical uses of BICs in an active device are still unestablished. A large index contrast and out-of-plane symmetries that aid the formation of BICs are not trivial to achieve using conventional approaches for semiconductor laser design. Here, we propose a doping scheme to circumvent this issue. We also show that the introduction of material absorption due to carriers deteriorates the quality factor of BIC modes and show that a suitable compromise between electrical conductivity and optical loss can be achieved.

3.
Opt Lett ; 45(15): 4108-4111, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32735235

RESUMEN

Topology plays a fundamental role in contemporary physics and enables new information processing schemes and wave device physics with built-in robustness. However, the creation of photonic topological phases usually requires complex geometries that limit the prospect for miniaturization and integration and dispossess designers of additional degrees of freedom needed to control topological modes on-chip. By controlling the degree of asymmetry (DoA) in a photonic crystal with broken inversion symmetry, we report single-mode lasing of valley-Hall ring cavities at telecommunication wavelength. The DoA governs four photon confinement regimes at the interface of topologically distinct valley-Hall domains and evidences an interplay between the width of the topological bandgap and the quality factor of ring-like modes for single-mode operation. Our results open the door to novel optoelectronic devices and systems based on compact topological integrated circuits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA