Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 32(8): 1902-9, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22556331

RESUMEN

OBJECTIVE: The central nervous system is thought to influence the regulation of the cardiovascular system in response to humoral and neural signals from peripheral tissues, but our understanding of the molecular mechanisms involved is still quite limited. METHODS AND RESULTS: Here, we demonstrate a central nervous system-mediated mechanism by which brain-derived neurotrophic factor (BDNF) has a protective effect against cardiac remodeling after myocardial infarction (MI). We generated conditional BDNF knockout mice, in which expression of BDNF was systemically reduced, by using the inducible Cre-loxP system. Two weeks after MI was induced surgically in these mice, systolic function was significantly impaired and cardiac size was markedly increased in conditional BDNF knockout mice compared with controls. Cardiomyocyte death was increased in these mice, along with decreased expression of survival molecules. Deletion of the BDNF receptor (tropomyosin-related kinase B) from the heart also led to the exacerbation of cardiac dysfunction after MI. The plasma levels of BDNF were markedly increased after MI, and this increase was associated with the upregulation of BDNF expression in the brain, but not in the heart. Ablation of afferent nerves from the heart or genetic disruption of neuronal BDNF expression inhibited the increase of plasma BDNF after MI and led to the exacerbation of cardiac dysfunction. Peripheral administration of BDNF significantly restored the cardiac phenotype of neuronal BDNF-deficient mice. CONCLUSIONS: These results suggest that BDNF expression is upregulated by neural signals from the heart after MI and then protects the myocardium against ischemic injury.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Encéfalo/fisiología , Infarto del Miocardio/fisiopatología , Animales , Factor Neurotrófico Derivado del Encéfalo/sangre , Ratones , Ratones Noqueados , Receptor trkB/fisiología , Transducción de Señal , Sístole , Remodelación Ventricular
2.
Circ Res ; 106(2): 391-8, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-19940264

RESUMEN

RATIONALE: The axon-guiding molecules known as semaphorins and their receptors (plexins) regulate the vascular pattern and play an important role in the development of vascular network during embryogenesis. Semaphorin (Sema)3E is one of the class 3 semaphorins, and plexinD1 is known to be its receptor. Although these molecules have a role in embryonic vascular development, it remains unclear whether the Sema3E/plexinD1 axis is involved in postnatal angiogenesis. OBJECTIVE: The objective of this study was to elucidate the role of Sema3E/plexinD1 in postnatal angiogenesis. METHODS AND RESULTS: Sema3E inhibited cell growth and tube formation by suppressing the vascular endothelial growth factor (VEGF) signaling pathway. Expression of Sema3E and plexinD1 was markedly upregulated in ischemic limbs of mice (2.5- and 4.5-fold increase for Sema3E and plexinD1, respectively), and inhibition of this pathway by introduction of the plexinD1-Fc gene or disruption of Sema3E led to a significant increase of blood flow recovery (1.6- and 1.5-fold increase for the plexinD1-Fc gene treatment and Sema3E disruption, respectively). Hypoxia activated the tumor suppressor protein p53, thereby upregulating Sema3E expression. Expression of p53 and Sema3E was enhanced in diabetic mice compared with normal mice (2- and 1.3-fold increase for p53 and Sema3E, respectively). Consequently, neovascularization after VEGF treatment was poor in the ischemic tissues of diabetic mice, whereas treatment with VEGF plus plexinD1-Fc markedly improved neovascularization. CONCLUSIONS: These results indicate that inhibition of Sema3E may be a novel strategy for therapeutic angiogenesis, especially when VEGF is ineffective.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Semaforinas/farmacología , Factor A de Crecimiento Endotelial Vascular/farmacología , Animales , Western Blotting , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Expresión Génica , Miembro Posterior/irrigación sanguínea , Miembro Posterior/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Isquemia , Glicoproteínas de Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Oncogénica v-akt/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semaforinas/genética , Semaforinas/metabolismo , Estreptozocina , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
Circ Res ; 103(3): 261-8, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18583712

RESUMEN

Vascular endothelial growth factor (VEGF) binds both VEGF receptor-1 (VEGFR-1) and VEGF receptor-2 (VEGFR-2). Activation of VEGFR-2 is thought to play a major role in the regulation of endothelial function by VEGF. Recently, specific ligands for VEGFR-1 have been reported to have beneficial effects when used to treat ischemic diseases. However, the role of VEGFR-1 in angiogenesis is not fully understood. In this study, we showed that VEGFR-1 performs "fine tuning" of VEGF signaling to induce neovascularization. We examined the effects of retroviral vectors expressing a small interference RNA that targeted either the VEGFR-1 gene or the VEGFR-2 gene. Deletion of either VEGFR-1 or VEGFR-2 reduced the ability of endothelial cells to form capillaries. Deletion of VEGFR-1 markedly reduced endothelial cell proliferation and induced premature senescence of endothelial cells. In contrast, deletion of VEGFR-2 significantly impaired endothelial cell survival. When VEGFR-1 expression was blocked, VEGF constitutively activated Akt signals and thus induced endothelial cell senescence via a p53-dependent pathway. VEGFR-1(+/-) mice exhibited an increase of endothelial Akt activity and showed an impaired neovascularization in response to ischemia, and this impairment was ameliorated in VEGFR-1(+/-) Akt1(+/-) mice. These results suggest that VEGFR-1 plays a critical role in the maintenance of endothelial integrity by modulating the VEGF/Akt signaling pathway.


Asunto(s)
Endotelio Vascular/citología , Neovascularización Fisiológica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/fisiología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/fisiología , Animales , Supervivencia Celular , Células Cultivadas , Senescencia Celular , Endotelio Vascular/fisiología , Humanos , Isquemia , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Transducción de Señal , Receptor 1 de Factores de Crecimiento Endotelial Vascular/deficiencia , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/deficiencia , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
4.
PLoS One ; 9(7): e102186, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25057989

RESUMEN

Risk factors for atherosclerosis accelerate the senescence of vascular endothelial cells and promote atherogenesis by inducing vascular inflammation. A hallmark of endothelial senescence is the persistent up-regulation of pro-inflammatory genes. We identified CDC42 signaling as a mediator of chronic inflammation associated with endothelial senescence. Inhibition of CDC42 or NF-κB signaling attenuated the sustained up-regulation of pro-inflammatory genes in senescent human endothelial cells. Endothelium-specific activation of the p53/p21 pathway, a key mediator of senescence, also resulted in up-regulation of pro-inflammatory molecules in mice, which was reversed by Cdc42 deletion in endothelial cells. Likewise, endothelial-specific deletion of Cdc42 significantly attenuated chronic inflammation and plaque formation in atherosclerotic mice. While inhibition of NF-κB suppressed the pro-inflammatory responses in acute inflammation, the influence of Cdc42 deletion was less marked. Knockdown of cdc-42 significantly down-regulated pro-inflammatory gene expression and restored the shortened lifespan to normal in mutant worms with enhanced inflammation. These findings indicate that the CDC42 pathway is critically involved in senescence-associated inflammation and could be a therapeutic target for chronic inflammation in patients with age-related diseases without compromising host defenses.


Asunto(s)
Aterosclerosis/genética , Senescencia Celular/genética , Endotelio Vascular/metabolismo , Proteína de Unión al GTP cdc42/genética , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio Vascular/patología , Regulación de la Expresión Génica , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Longevidad/genética , Ratones , Ratones Transgénicos , FN-kappa B/antagonistas & inhibidores , FN-kappa B/genética , FN-kappa B/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína de Unión al GTP cdc42/deficiencia
5.
PLoS One ; 9(6): e100359, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24950189

RESUMEN

Evolutionarily conserved Notch signaling controls cell fate determination and differentiation during development, and is also essential for neovascularization in adults. Although recent studies suggest that the Notch pathway is associated with age-related conditions, it remains unclear whether Notch signaling is involved in vascular aging. Here we show that Notch signaling has a crucial role in endothelial cell senescence. Inhibition of Notch signaling in human endothelial cells induced premature senescence via a p16-dependent pathway. Conversely, over-expression of Notch1 or Jagged1 prolonged the replicative lifespan of endothelial cells. Notch1 positively regulated the expression of inhibitor of DNA binding 1 (Id1) and MAP kinase phosphatase 1 (MKP1), while MKP1 further up-regulated Id1 expression by inhibiting p38MAPK-induced protein degradation. Over-expression of Id1 down-regulated p16 expression, thereby inhibiting premature senescence of Notch1-deleted endothelial cells. These findings indicate that Notch1 signaling has a role in the regulation of endothelial cell senescence via a p16-dependent pathway and suggest that activation of Notch1 could be a new therapeutic target for treating age-associated vascular diseases.


Asunto(s)
Senescencia Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Receptor Notch1/metabolismo , Transducción de Señal , Animales , Proteínas de Unión al Calcio/genética , Senescencia Celular/efectos de los fármacos , Fosfatasa 1 de Especificidad Dual/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Proteína Jagged-1 , Proteínas de la Membrana/genética , Ratones , Fenotipo , Inhibidores de Proteínas Quinasas/farmacología , Proteolisis/efectos de los fármacos , Proteínas Serrate-Jagged , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
6.
Cell Rep ; 7(5): 1691-1703, 2014 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-24857662

RESUMEN

Accumulating evidence has suggested a role for p53 activation in various age-associated conditions. Here, we identified a crucial role of endothelial p53 activation in the regulation of glucose homeostasis. Endothelial expression of p53 was markedly upregulated when mice were fed a high-calorie diet. Disruption of endothelial p53 activation improved dietary inactivation of endothelial nitric oxide synthase that upregulated the expression of peroxisome proliferator-activated receptor-γ coactivator-1α in skeletal muscle, thereby increasing mitochondrial biogenesis and oxygen consumption. Mice with endothelial cell-specific p53 deficiency fed a high-calorie diet showed improvement of insulin sensitivity and less fat accumulation, compared with control littermates. Conversely, upregulation of endothelial p53 caused metabolic abnormalities. These results indicate that inhibition of endothelial p53 could be a novel therapeutic target to block the vicious cycle of cardiovascular and metabolic abnormalities associated with obesity.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/metabolismo , Resistencia a la Insulina , Recambio Mitocondrial , Obesidad/metabolismo , Consumo de Oxígeno , Proteína p53 Supresora de Tumor/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Humanos , Metabolismo de los Lípidos , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Obesidad/etiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/genética , Regulación hacia Arriba
7.
Cell Metab ; 18(4): 491-504, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24093674

RESUMEN

Semaphorins and their receptors (plexins) are axon-guiding molecules that regulate the development of the nervous system during embryogenesis. Here we describe a previously unknown role of class 3 semaphorin E (Sema3E) in adipose tissue inflammation and insulin resistance. Expression of Sema3E and its receptor plexinD1 was upregulated in the adipose tissue of a mouse model of dietary obesity. Inhibition of the Sema3E-plexinD1 axis markedly reduced adipose tissue inflammation and improved insulin resistance in this model. Conversely, overexpression of Sema3E in adipose tissue provoked inflammation and insulin resistance. Sema3E promoted infiltration of macrophages, and this effect was inhibited by disrupting plexinD1 expression in macrophages. Disruption of adipose tissue p53 expression led to downregulation of Sema3E expression and improved adipose tissue inflammation. These results indicate that Sema3E acts as a chemoattractant for macrophages, with p53-induced upregulation of Sema3E expression provoking adipose tissue inflammation and systemic insulin resistance in association with dietary obesity.


Asunto(s)
Dieta Alta en Grasa , Inflamación/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Obesidad/metabolismo , Semaforinas/metabolismo , Tejido Adiposo/metabolismo , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Resistencia a la Insulina , Péptidos y Proteínas de Señalización Intracelular , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Neuropilina-1/metabolismo , Obesidad/etiología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Semaforinas/genética , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
8.
PLoS One ; 8(7): e69178, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23935948

RESUMEN

There is increasing evidence that nutrient-sensing machinery is critically involved in the regulation of aging. The insulin/insulin-like growth factor-1 signaling pathway is the best-characterized pathway with an influence on longevity in a variety of organisms, ranging from yeast to rodents. Reduced expression of the receptor for this pathway has been reported to prolong the lifespan; however, the underlying mechanisms are largely unknown. Here we show that haploinsufficiency of Akt1 leads to an increase of the lifespan in mice. Akt1 (+/-) mice had a lower body weight than their littermates with less fat mass and normal glucose metabolism. Ribosomal biogenesis and the mitochondrial DNA content were significantly reduced in these mice, along with a decrease of oxidative stress. Consistent with the results obtained in mice, inhibition of Akt-1 promoted longevity in nematodes (Caenorhabditis elegans), whereas activation of Akt-1 shortened the lifespan. Inhibition of Akt-1 led to a decrease of ribosomal gene expression and the mitochondrial DNA content in both human cells and nematodes. Moreover, deletion of ribosomal gene expression resulted in a decrease of the mitochondrial DNA content and normalized the lifespan shortened by Akt-1 activation in nematodes. These results suggest that an increase of mitochondrial amount and energy expenditure associated with enhanced protein synthesis accelerates both aging and the onset of age-associated diseases.


Asunto(s)
Haploinsuficiencia/genética , Longevidad/genética , Proteínas Proto-Oncogénicas c-akt/genética , Factores de Edad , Animales , Caenorhabditis elegans/fisiología , Femenino , Humanos , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Fenotipo , Ribosomas/metabolismo
9.
Cell Metab ; 15(1): 51-64, 2012 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-22225876

RESUMEN

Several clinical studies have shown that insulin resistance is prevalent among patients with heart failure, but the underlying mechanisms have not been fully elucidated. Here, we report a mechanism of insulin resistance associated with heart failure that involves upregulation of p53 in adipose tissue. We found that pressure overload markedly upregulated p53 expression in adipose tissue along with an increase of adipose tissue inflammation. Chronic pressure overload accelerated lipolysis in adipose tissue. In the presence of pressure overload, inhibition of lipolysis by sympathetic denervation significantly downregulated adipose p53 expression and inflammation, thereby improving insulin resistance. Likewise, disruption of p53 activation in adipose tissue attenuated inflammation and improved insulin resistance but also ameliorated cardiac dysfunction induced by chronic pressure overload. These results indicate that chronic pressure overload upregulates adipose tissue p53 by promoting lipolysis via the sympathetic nervous system, leading to an inflammatory response of adipose tissue and insulin resistance.


Asunto(s)
Tejido Adiposo/metabolismo , Insuficiencia Cardíaca/metabolismo , Inflamación/metabolismo , Resistencia a la Insulina , Proteína p53 Supresora de Tumor/metabolismo , Animales , Línea Celular , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/fisiopatología , Humanos , Inflamación/complicaciones , Inflamación/patología , Isoproterenol/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Presión , Sistema Nervioso Simpático/metabolismo , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/genética , Regulación hacia Arriba
10.
J Clin Invest ; 120(5): 1506-14, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20407209

RESUMEN

Although many animal studies indicate insulin has cardioprotective effects, clinical studies suggest a link between insulin resistance (hyperinsulinemia) and heart failure (HF). Here we have demonstrated that excessive cardiac insulin signaling exacerbates systolic dysfunction induced by pressure overload in rodents. Chronic pressure overload induced hepatic insulin resistance and plasma insulin level elevation. In contrast, cardiac insulin signaling was upregulated by chronic pressure overload because of mechanical stretch-induced activation of cardiomyocyte insulin receptors and upregulation of insulin receptor and Irs1 expression. Chronic pressure overload increased the mismatch between cardiomyocyte size and vascularity, thereby inducing myocardial hypoxia and cardiomyocyte death. Inhibition of hyperinsulinemia substantially improved pressure overload-induced cardiac dysfunction, improving myocardial hypoxia and decreasing cardiomyocyte death. Likewise, the cardiomyocyte-specific reduction of insulin receptor expression prevented cardiac ischemia and hypertrophy and attenuated systolic dysfunction due to pressure overload. Conversely, treatment of type 1 diabetic mice with insulin improved hyperglycemia during pressure overload, but increased myocardial ischemia and cardiomyocyte death, thereby inducing HF. Promoting angiogenesis restored the cardiac dysfunction induced by insulin treatment. We therefore suggest that the use of insulin to control hyperglycemia could be harmful in the setting of pressure overload and that modulation of insulin signaling is crucial for the treatment of HF.


Asunto(s)
Insulina/metabolismo , Miocardio/metabolismo , Sístole , Animales , Diabetes Mellitus Tipo 1/sangre , Insuficiencia Cardíaca , Hipoxia , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Presión , Ratas , Ratas Endogámicas SHR , Receptor de Insulina/biosíntesis , Estrés Mecánico , Regulación hacia Arriba
11.
Nat Med ; 15(9): 1082-7, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19718037

RESUMEN

Various stimuli, such as telomere dysfunction and oxidative stress, can induce irreversible cell growth arrest, which is termed 'cellular senescence'. This response is controlled by tumor suppressor proteins such as p53 and pRb. There is also evidence that senescent cells promote changes related to aging or age-related diseases. Here we show that p53 expression in adipose tissue is crucially involved in the development of insulin resistance, which underlies age-related cardiovascular and metabolic disorders. We found that excessive calorie intake led to the accumulation of oxidative stress in the adipose tissue of mice with type 2 diabetes-like disease and promoted senescence-like changes, such as increased activity of senescence-associated beta-galactosidase, increased expression of p53 and increased production of proinflammatory cytokines. Inhibition of p53 activity in adipose tissue markedly ameliorated these senescence-like changes, decreased the expression of proinflammatory cytokines and improved insulin resistance in mice with type 2 diabetes-like disease. Conversely, upregulation of p53 in adipose tissue caused an inflammatory response that led to insulin resistance. Adipose tissue from individuals with diabetes also showed senescence-like features. Our results show a previously unappreciated role of adipose tissue p53 expression in the regulation of insulin resistance and suggest that cellular aging signals in adipose tissue could be a new target for the treatment of diabetes (pages 996-967).


Asunto(s)
Tejido Adiposo/metabolismo , Resistencia a la Insulina/fisiología , Proteína p53 Supresora de Tumor/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Ingestión de Energía , Genes p53 , Resistencia a la Insulina/genética , Ratones , Ratones Mutantes , Ratones Transgénicos , Estrés Oxidativo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
12.
J Exp Med ; 206(7): 1565-74, 2009 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-19546247

RESUMEN

To identify a novel target for the treatment of heart failure, we examined gene expression in the failing heart. Among the genes analyzed, Alox15 encoding the protein 12/15 lipoxygenase (LOX) was markedly up-regulated in heart failure. To determine whether increased expression of 12/15-LOX causes heart failure, we established transgenic mice that overexpressed 12/15-LOX in cardiomyocytes. Echocardiography showed that Alox15 transgenic mice developed systolic dysfunction. Cardiac fibrosis increased in Alox15 transgenic mice with advancing age and was associated with the infiltration of macrophages. Consistent with these observations, cardiac expression of monocyte chemoattractant protein 1 (MCP-1) was up-regulated in Alox15 transgenic mice compared with wild-type mice. Treatment with 12-hydroxy-eicosatetraenoic acid, a major metabolite of 12/15-LOX, increased MCP-1 expression in cardiac fibroblasts and endothelial cells but not in cardiomyocytes. Inhibition of MCP-1 reduced the infiltration of macrophages into the myocardium and prevented both systolic dysfunction and cardiac fibrosis in Alox15 transgenic mice. Likewise, disruption of 12/15-LOX significantly reduced cardiac MCP-1 expression and macrophage infiltration, thereby improving systolic dysfunction induced by chronic pressure overload. Our results suggest that cardiac 12/15-LOX is involved in the development of heart failure and that inhibition of 12/15-LOX could be a novel treatment for this condition.


Asunto(s)
Araquidonato 12-Lipooxigenasa/inmunología , Araquidonato 15-Lipooxigenasa/inmunología , Insuficiencia Cardíaca , Inflamación , Miocardio , Animales , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/genética , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Perfilación de la Expresión Génica , Corazón/fisiología , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/inmunología , Humanos , Inflamación/enzimología , Inflamación/inmunología , Inhibidores de la Lipooxigenasa , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Miocardio/enzimología , Miocardio/inmunología , Ratas , Ratas Endogámicas Dahl , Ratas Wistar , Sodio en la Dieta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA