RESUMEN
Condensin is a structural maintenance of chromosomes (SMC) complex family member thought to build mitotic chromosomes by DNA loop extrusion. However, condensin variants unable to extrude loops, yet proficient in chromosome formation, were recently described. Here, we explore how condensin might alternatively build chromosomes. Using bulk biochemical and single-molecule experiments with purified fission yeast condensin, we observe that individual condensins sequentially and topologically entrap two double-stranded DNAs (dsDNAs). Condensin loading transitions through a state requiring DNA bending, as proposed for the related cohesin complex. While cohesin then favors the capture of a second single-stranded DNA (ssDNA), second dsDNA capture emerges as a defining feature of condensin. We provide complementary in vivo evidence for DNA-DNA capture in the form of condensin-dependent chromatin contacts within, as well as between, chromosomes. Our results support a "diffusion capture" model in which condensin acts in mitotic chromosome formation by sequential dsDNA-dsDNA capture.
Asunto(s)
Proteínas de Unión al ADN , Schizosaccharomyces , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/química , ADN/genética , Cromosomas , Proteínas de Ciclo Celular/genética , Schizosaccharomyces/genética , MitosisRESUMEN
The three-dimensional (3D) genome structure is highly ordered by a hierarchy of organizing events ranging from enhancer-promoter or gene-gene contacts to chromosomal territorial arrangement. It is becoming clear that the cohesin and condensin complexes are key molecular machines that organize the 3D genome structure. These complexes are highly conserved from simple systems, e.g., yeast cells, to the much more complex human system. Therefore, knowledge from the budding and fission yeast systems illuminates highly conserved molecular mechanisms of how cohesin and condensin establish the functional 3D genome structures. Here I discuss how these complexes are recruited across the yeast genomes, mediate distinct genome-organizing events such as gene contacts and topological domain formation, and participate in important nuclear activities including transcriptional regulation and chromosomal dynamics.
Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Complejos Multiproteicos/genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/química , Cromatina/ultraestructura , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/química , Cromosomas Fúngicos/ultraestructura , Secuencia Conservada , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos , Complejos Multiproteicos/metabolismo , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Schizosaccharomyces/metabolismo , Schizosaccharomyces/ultraestructura , Transcripción Genética , CohesinasRESUMEN
During meiotic prophase, cohesin-dependent axial structures are formed in the synaptonemal complex (SC). However, the functional correlation between these structures and cohesion remains elusive. Here, we examined the formation of cohesin-dependent axial structures in the fission yeast Schizosaccharomyces pombe. This organism forms atypical SCs composed of linear elements (LinEs) resembling the lateral elements of SC but lacking the transverse filaments. Hi-C analysis using a highly synchronous population of meiotic S. pombe cells revealed that the axis-loop chromatin structure formed in meiotic prophase was dependent on the Rec8 cohesin complex. In contrast, the Rec8-mediated formation of the axis-loop structure occurred in cells lacking components of LinEs. To dissect the functions of Rec8, we identified a rec8-F204S mutant that lost the ability to assemble the axis-loop structure without losing cohesion of sister chromatids. This mutant showed defects in the formation of the axis-loop structure and LinE assembly and thus exhibited reduced meiotic recombination. Collectively, our results demonstrate that the Rec8-dependent axis-loop structure provides a structural platform essential for LinE assembly, facilitating meiotic recombination of homologous chromosomes, independently of its role in sister chromatid cohesion.
Asunto(s)
Meiosis , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Ciclo Celular , Cromatina , Proteínas Cromosómicas no Histona , Fosfoproteínas/genética , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Complejo Sinaptonémico , CohesinasRESUMEN
Genome/chromosome organization is highly ordered and controls various nuclear events, although the molecular mechanisms underlying the functional organization remain largely unknown. Here, we show that the TATA box-binding protein (TBP) interacts with the Cnd2 kleisin subunit of condensin to mediate interphase and mitotic chromosomal organization in fission yeast. TBP recruits condensin onto RNA polymerase III-transcribed (Pol III) genes and highly transcribed Pol II genes; condensin in turn associates these genes with centromeres. Inhibition of the Cnd2-TBP interaction disrupts condensin localization across the genome and the proper assembly of mitotic chromosomes, leading to severe defects in chromosome segregation and eventually causing cellular lethality. We propose that the Cnd2-TBP interaction coordinates transcription with chromosomal architecture by linking dispersed gene loci with centromeres. This chromosome arrangement can contribute to the efficient transmission of physical force at the kinetochore to chromosomal arms, thereby supporting the fidelity of chromosome segregation.
Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteína de Unión a TATA-Box/genética , Proteína de Unión a TATA-Box/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/química , Centrómero/genética , Centrómero/metabolismo , Segregación Cromosómica , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genes Fúngicos , Mitosis , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación Puntual , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Schizosaccharomyces/citología , Proteínas de Schizosaccharomyces pombe/química , Proteína de Unión a TATA-Box/químicaRESUMEN
Complex genome organizations participate in various nuclear processes including transcription, DNA replication, and repair. However, the mechanisms that generate and regulate these functional genome structures remain largely unknown. Here, we describe how the Ku heterodimer complex, which functions in nonhomologous end joining, mediates clustering of long terminal repeat retrotransposons at centromeres in fission yeast. We demonstrate that the CENP-B subunit, Abp1, functions as a recruiter of the Ku complex, which in turn loads the genome-organizing machinery condensin to retrotransposons. Intriguingly, histone H3 lysine 56 (H3K56) acetylation, which functions in DNA replication and repair, interferes with Ku localization at retrotransposons without disrupting Abp1 localization and, as a consequence, dissociates condensin from retrotransposons. This dissociation releases condensin-mediated genomic associations during S phase and upon DNA damage. ATR (ATM- and Rad3-related) kinase mediates the DNA damage response of condensin-mediated genome organization. Our study describes a function of H3K56 acetylation that neutralizes condensin-mediated genome organization.
Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ciclo Celular , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Genoma , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Complejos Multiproteicos/metabolismo , Acetilación , Adenosina Trifosfatasas/genética , ADN de Hongos/genética , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Microfilamentos/metabolismo , Complejos Multiproteicos/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
Heterochromatin impacts various nuclear processes by providing a recruiting platform for diverse chromosomal proteins. In fission yeast, HP1 proteins Chp2 and Swi6, which bind to methylated histone H3 lysine 9, associate with SHREC (Snf2/HDAC repressor complex) and Clr6 histone deacetylases (HDACs) involved in heterochromatic silencing. However, heterochromatic silencing machinery is not fully defined. We describe a histone chaperone complex containing Asf1 and HIRA that spreads across silenced domains via its association with Swi6 to enforce transcriptional silencing. Asf1 functions in concert with a Clr6 HDAC complex to silence heterochromatic repeats, and it suppresses antisense transcription by promoting histone deacetylation. Furthermore, we demonstrate that Asf1 and SHREC facilitate nucleosome occupancy at heterochromatic regions but TFIIIC transcription factor binding sites within boundary elements are refractory to these factors. These analyses uncover a role for Asf1 in global histone deacetylation and suggest that HP1-associated histone chaperone promotes nucleosome occupancy to assemble repressive heterochromatin.
Asunto(s)
Silenciador del Gen , Histonas/metabolismo , Chaperonas Moleculares/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/genética , Factores de Transcripción/fisiología , Acetilación , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/fisiología , Epigénesis Genética , Heterocromatina/metabolismo , Chaperonas Moleculares/metabolismo , Nucleosomas/metabolismo , ARN sin Sentido/metabolismo , Recombinación Genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Factores de Transcripción/metabolismoRESUMEN
Genomic instability associated with DNA replication stress is linked to cancer and genetic pathologies in humans. If not properly regulated, replication stress, such as fork stalling and collapse, can be induced at natural replication impediments present throughout the genome. The fork protection complex (FPC) is thought to play a critical role in stabilizing stalled replication forks at several known replication barriers including eukaryotic rDNA genes and the fission yeast mating-type locus. However, little is known about the role of the FPC at other natural impediments including telomeres. Telomeres are considered to be difficult to replicate due to the presence of repetitive GT-rich sequences and telomere-binding proteins. However, the regulatory mechanism that ensures telomere replication is not fully understood. Here, we report the role of the fission yeast Swi1(Timeless), a subunit of the FPC, in telomere replication. Loss of Swi1 causes telomere shortening in a telomerase-independent manner. Our epistasis analyses suggest that heterochromatin and telomere-binding proteins are not major impediments for telomere replication in the absence of Swi1. Instead, repetitive DNA sequences impair telomere integrity in swi1Δ mutant cells, leading to the loss of repeat DNA. In the absence of Swi1, telomere shortening is accompanied with an increased recruitment of Rad52 recombinase and more frequent amplification of telomere/subtelomeres, reminiscent of tumor cells that utilize the alternative lengthening of telomeres pathway (ALT) to maintain telomeres. These results suggest that Swi1 ensures telomere replication by suppressing recombination and repeat instability at telomeres. Our studies may also be relevant in understanding the potential role of Swi1(Timeless) in regulation of telomere stability in cancer cells.
Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Inestabilidad de Microsatélites , Secuencias Repetitivas de Ácidos Nucleicos/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Unión a Telómeros/genética , Replicación del ADN/genética , Inestabilidad Genómica , Heterocromatina/genética , Humanos , Proteína Recombinante y Reparadora de ADN Rad52/genética , Schizosaccharomyces/genética , Telómero/genética , Homeostasis del Telómero , Acortamiento del Telómero/genéticaRESUMEN
Chromosomes are not randomly disposed in the nucleus but instead occupy discrete sub-nuclear domains, referred to as chromosome territories. The molecular mechanisms that underlie the formation of chromosome territories and how they are regulated during the cell cycle remain largely unknown. Here, we have developed two different chromosome-painting approaches to address how chromosome territories are organized in the fission yeast model organism. We show that condensin frequently associates RNA polymerase III-transcribed genes (tRNA and 5S rRNA) that are present on the same chromosomes, and that the disruption of these associations by condensin mutations significantly compromises the chromosome territory arrangement. We also find that condensin-dependent intra-chromosomal gene associations and chromosome territories are co-regulated during the cell cycle. For example, condensin-directed gene associations occur to the least degree during S phase, with the chromosomal overlap becoming largest. In clear contrast, condensin-directed gene associations become tighter in other cell-cycle phases, especially during mitosis, with the overlap between the different chromosomes being smaller. This study suggests that condensin-driven intra-chromosomal gene associations contribute to the organization and regulation of chromosome territories during the cell cycle.
Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ciclo Celular/genética , Posicionamiento de Cromosoma , Cromosomas Fúngicos , Proteínas de Unión al ADN/metabolismo , Genes Fúngicos , Complejos Multiproteicos/metabolismo , Adenosina Trifosfatasas/genética , Centrómero , Pintura Cromosómica , Proteínas de Unión al ADN/genética , Complejos Multiproteicos/genética , Mutación , ARN Polimerasa III , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismoRESUMEN
Methylation of histone H4 lysine 20 (H4K20me) is essential for recruiting checkpoint proteins 53BP1/Crb2 to DNA lesions and subsequent activation of a DNA-damage checkpoint. In fission yeast, Set9 (spKMT5) catalyzes mono-, di-, and trimethylation of H4K20. However, the mechanisms that regulate Set9 function are poorly understood. Here, we identified a PWWP domain protein Pdp1 as a Set9-associated factor. Pdp1 binds to histones and is required for Set9 chromatin localization. Yeast cells without Pdp1 were deficient in all three states of H4K20me, sensitive to genotoxic treatments, and impaired in Crb2 recruitment. The PWWP domain of Pdp1 binds to H4K20me, and mutations within the PWWP domain that abrogated this interaction in vitro reduced both the association of Set9 with chromatin and the extent of H4K20me in vivo. These results demonstrate that the PWWP domain is a new methyl-lysine recognition motif that plays important roles in epigenetic regulation.
Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Proteína Metiltransferasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Secuencia de Aminoácidos , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , Daño del ADN , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina , Espectrometría de Masas , Metilación , Datos de Secuencia Molecular , Mutación , Proteína Metiltransferasas/genética , Estructura Terciaria de Proteína , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genéticaRESUMEN
Genome/chromosome structures are formed by a hierarchy of organizing processes ranging from gene interactions to chromosome territory formation. The SMC complex, cohesin, mediates interactions among enhancers and promoters, thereby regulating transcription. Another SMC complex, condensin, also plays critical roles in genome organization, although the detailed mechanisms remain much less well understood. Here, we discuss our recent findings on how fission yeast condensin mediates interactions among genes and how condensin-dependent interactions play dual roles in the chromosome territory arrangement during interphase and in mitotic chromosome organization, which supports the fidelity of chromosome segregation. Our studies suggest that condensin serves as a functional ligature connecting gene interactions, chromosome territory arrangement, transcriptional regulation, and chromosome segregation.
Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Segregación Cromosómica , Regulación Fúngica de la Expresión Génica , Mitosis , Unión Proteica , Transporte de Proteínas , Proteína de Unión a TATA-Box/metabolismo , Transcripción GenéticaRESUMEN
Dispersed genetic elements, such as retrotransposons and Pol-III-transcribed genes, including tRNA and 5S rRNA, cluster and associate with centromeres in fission yeast through the function of condensin. However, the dynamics of these condensin-mediated genomic associations remains unknown. We have examined the 3D motions of genomic loci including the centromere, telomere, rDNA repeat locus, and the loci carrying Pol-III-transcribed genes or long-terminal repeat (LTR) retrotransposons in live cells at as short as 1.5-second intervals. Treatment with carbendazim (CBZ), a microtubule-destabilizing agent, not only prevents centromeric motion, but also reduces the mobility of the other genomic loci during interphase. Further analyses demonstrate that condensin-mediated associations between centromeres and the genomic loci are clonal, infrequent and transient. However, when associated, centromeres and the genomic loci migrate together in a coordinated fashion. In addition, a condensin mutation that disrupts associations between centromeres and the genomic loci results in a concomitant decrease in the mobility of the loci. Our study suggests that highly mobile centromeres pulled by microtubules in cytoplasm serve as 'genome mobility elements' by facilitating physical relocations of associating genomic regions.
Asunto(s)
Centrómero/genética , Interfase/genética , Mitosis/genética , Schizosaccharomyces/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/ultraestructura , Bencimidazoles/farmacología , Carbamatos/farmacología , ADN Ribosómico/genética , ADN Ribosómico/ultraestructura , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/ultraestructura , Genoma Fúngico , Microtúbulos/efectos de los fármacos , Microtúbulos/ultraestructura , Mitosis/efectos de los fármacos , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , ARN Ribosómico 5S/genética , ARN Ribosómico 5S/ultraestructura , ARN de Transferencia/genética , ARN de Transferencia/ultraestructura , Retroelementos/genética , Schizosaccharomyces/citología , Telómero/genética , Telómero/ultraestructuraRESUMEN
Eukaryotic genomes exist in the cell nucleus as an elaborate three-dimensional structure which reflects various nuclear processes such as transcription, DNA replication and repair. Next-generation sequencing (NGS) combined with chromosome conformation capture (3C), referred to as 3C-seq in this article, has recently been applied to the yeast and human genomes, revealing genome-wide views of functional associations among genes and their regulatory elements. Here, we compare the latest genomic approaches such as 3C-seq and ChIA-PET, and provide a condensed overview of how eukaryotic genomes are functionally organized in the nucleus.
Asunto(s)
Posicionamiento de Cromosoma , Genoma Fúngico , Genoma Humano , Genómica/métodos , Conformación de Ácido Nucleico , Análisis de Secuencia de ADN/métodos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Mapeo Cromosómico/métodos , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , Cromosomas Humanos/genética , Cromosomas Humanos/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , Humanos , Levaduras/genética , Levaduras/metabolismoRESUMEN
Transposable elements and their remnants constitute a substantial fraction of eukaryotic genomes. Host genomes have evolved defence mechanisms, including chromatin modifications and RNA interference, to regulate transposable elements. Here we describe a genome surveillance mechanism for retrotransposons by transposase-derived centromeric protein CENP-B homologues of the fission yeast Schizosaccharomyces pombe. CENP-B homologues of S. pombe localize at and recruit histone deacetylases to silence Tf2 retrotransposons. CENP-Bs also repress solo long terminal repeats (LTRs) and LTR-associated genes. Tf2 elements are clustered into 'Tf' bodies, the organization of which depends on CENP-Bs that display discrete nuclear structures. Furthermore, CENP-Bs prevent an 'extinct' Tf1 retrotransposon from re-entering the host genome by blocking its recombination with extant Tf2, and silence and immobilize a Tf1 integrant that becomes sequestered into Tf bodies. Our results reveal a probable ancient retrotransposon surveillance pathway important for host genome integrity, and highlight potential conflicts between DNA transposons and retrotransposons, major transposable elements believed to have greatly moulded the evolution of genomes.
Asunto(s)
Elementos Transponibles de ADN/genética , Genoma Fúngico/genética , Inestabilidad Genómica/genética , Retroelementos/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteína B del Centrómero/genética , Proteína B del Centrómero/metabolismo , Proteínas de Unión al ADN/genética , Evolución Molecular , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Genes Fúngicos/genética , Genes del Tipo Sexual de los Hongos/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Histona Desacetilasas/metabolismo , Estrés Oxidativo , Transporte de Proteínas , Schizosaccharomyces/enzimología , Proteínas de Schizosaccharomyces pombe/genética , Secuencias Repetidas Terminales/genéticaRESUMEN
Cellular senescence occurs in response to endogenous or exogenous stresses and is characterized by stable cell cycle arrest, alterations in nuclear morphology and secretion of proinflammatory factors, referred to as the senescence-associated secretory phenotype (SASP). An increase of senescent cells is associated with the development of several types of cancer and aging-related diseases. Therefore, senolytic agents that selectively remove senescent cells may offer opportunities for developing new therapeutic strategies against such cancers and aging-related diseases. This review outlines senescence inducers and the general characteristics of senescent cells. We also discuss the involvement of senescent cells in certain cancers and diseases. Finally, we describe a series of senolytic agents and their utilization in therapeutic strategies.
Asunto(s)
Senescencia Celular , Neoplasias , Animales , Humanos , Envejecimiento/metabolismo , Senescencia Celular/efectos de los fármacos , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Fenotipo Secretor Asociado a la Senescencia , Senoterapéuticos/uso terapéuticoRESUMEN
Angiosarcoma is an aggressive soft-tissue sarcoma with a poor prognosis. Chemotherapy for this cancer typically employs paclitaxel, a taxane (genotoxic drug), although it has a limited effect owing to chemoresistance to prolonged treatment. In this study, we examine an alternative angiosarcoma treatment approach that combines chemotherapeutic and senolytic agents. We find that the chemotherapeutic drugs cisplatin and paclitaxel efficiently induce senescence in angiosarcoma cells. Subsequent treatment with the senolytic agent ABT-263 eliminates senescent cells by activating the apoptotic pathway. In addition, expression analysis indicates that senescence-associated secretory phenotype genes are activated in senescent angiosarcoma cells and that ABT-263 treatment downregulates IFN-I pathway genes in senescent cells. Moreover, we show that cisplatin treatment alone requires high doses to remove angiosarcoma cells. In contrast, lower doses of cisplatin are sufficient to induce senescence, followed by the elimination of senescent cells by the senolytic treatment. This study sheds light on a potential therapeutic strategy against angiosarcoma by combining a relatively low dose of cisplatin with the ABT-263 senolytic agent, which can help ease the deleterious side effects of chemotherapy.
Asunto(s)
Compuestos de Anilina , Apoptosis , Senescencia Celular , Cisplatino , Hemangiosarcoma , Paclitaxel , Sulfonamidas , Hemangiosarcoma/tratamiento farmacológico , Hemangiosarcoma/patología , Humanos , Senescencia Celular/efectos de los fármacos , Cisplatino/uso terapéutico , Cisplatino/farmacología , Sulfonamidas/uso terapéutico , Sulfonamidas/farmacología , Línea Celular Tumoral , Paclitaxel/uso terapéutico , Paclitaxel/farmacología , Compuestos de Anilina/farmacología , Compuestos de Anilina/uso terapéutico , Apoptosis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patologíaRESUMEN
Eukaryotic genomes are organized by condensin into 3D chromosomal architectures suitable for chromosomal segregation during mitosis. However, molecular mechanisms underlying the condensin-mediated chromosomal organization remain largely unclear. Here, we investigate the role of newly identified interaction between the Cnd1 condensin and Pmc4 mediator subunits in fission yeast, Schizosaccharomyces pombe. We develop a condensin mutation, cnd1-K658E, that impairs the condensin-mediator interaction and find that this mutation diminishes condensinmediated chromatin domains during mitosis and causes chromosomal segregation defects. The condensin-mediator interaction is involved in recruiting condensin to highly transcribed genes and mitotically activated genes, the latter of which demarcate condensin-mediated domains. Furthermore, this study predicts that mediator-driven transcription of mitotically activated genes contributes to forming domain boundaries via phase separation. This study provides a novel insight into how genome-wide gene expression during mitosis is transformed into the functional chromosomal architecture suitable for chromosomal segregation.
RESUMEN
METTL3 is the catalytic subunit of the methyltransferase complex, which mediates m6A modification to regulate gene expression. In addition, METTL3 regulates transcription in an enzymatic activity-independent manner by driving changes in high-order chromatin structure. However, how these functions of the methyltransferase complex are coordinated remains unknown. Here we show that the methyltransferase complex coordinates its enzymatic activity-dependent and independent functions to regulate cellular senescence, a state of stable cell growth arrest. Specifically, METTL3-mediated chromatin loops induce Hexokinase 2 expression through the three-dimensional chromatin organization during senescence. Elevated Hexokinase 2 expression subsequently promotes liquid-liquid phase separation, manifesting as stress granule phase separation, by driving metabolic reprogramming. This correlates with an impairment of translation of cell-cycle related mRNAs harboring polymethylated m6A sites. In summary, our results report a coordination of m6A-dependent and -independent function of the methyltransferase complex in regulating senescence through phase separation driven by metabolic reprogramming.
Asunto(s)
Senescencia Celular , Cromatina , Metiltransferasas , Gránulos de Estrés , Metiltransferasas/metabolismo , Metiltransferasas/genética , Cromatina/metabolismo , Humanos , Gránulos de Estrés/metabolismo , Gránulos de Estrés/genética , Hexoquinasa/metabolismo , Hexoquinasa/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Adenosina/metabolismo , Adenosina/análogos & derivados , Células HEK293 , Reprogramación Metabólica , Separación de FasesRESUMEN
RNA interference is a conserved mechanism by which double-stranded RNA is processed into short interfering RNAs (siRNAs) that can trigger both post-transcriptional and transcriptional gene silencing. In fission yeast, the RNA-induced initiation of transcriptional gene silencing (RITS) complex contains Dicer-generated siRNAs and is required for heterochromatic silencing. Here we show that RITS components, including Argonaute protein, bind to all known heterochromatic loci. At the mating-type region, RITS is recruited to the centromere-homologous repeat cenH in a Dicer-dependent manner, whereas the spreading of RITS across the entire 20-kb silenced domain, as well as its subsequent maintenance, requires heterochromatin machinery including Swi6 and occurs even in the absence of Dicer. Furthermore, our analyses suggest that RNA interference machinery operates in cis as a stable component of heterochromatic domains with RITS tethered to silenced loci by methylation of histone H3 at Lys9. This tethering promotes the processing of transcripts and generation of additional siRNAs for heterochromatin maintenance.
Asunto(s)
Silenciador del Gen , Interferencia de ARN , Schizosaccharomyces/genética , Animales , Proteínas Cromosómicas no Histona/genética , Cromosomas Fúngicos , Metilación de ADN , Proteínas Ligadas a GPI , Heterocromatina , Modelos Genéticos , ARN Interferente Pequeño , Receptores del Factor de Necrosis Tumoral/genética , Miembro 10c de Receptores del Factor de Necrosis Tumoral , Proteínas de Schizosaccharomyces pombe/genética , Receptores Señuelo del Factor de Necrosis TumoralRESUMEN
We have comprehensively mapped long-range associations between chromosomal regions throughout the fission yeast genome using the latest genomics approach that combines next generation sequencing and chromosome conformation capture (3C). Our relatively simple approach, referred to as enrichment of ligation products (ELP), involves digestion of the 3C sample with a 4 bp cutter and self-ligation, achieving a resolution of 20 kb. It recaptures previously characterized genome organizations and also identifies new and important interactions. We have modeled the 3D structure of the entire fission yeast genome and have explored the functional relationships between the global genome organization and transcriptional regulation. We find significant associations among highly transcribed genes. Moreover, we demonstrate that genes co-regulated during the cell cycle tend to associate with one another when activated. Remarkably, functionally defined genes derived from particular gene ontology groups tend to associate in a statistically significant manner. Those significantly associating genes frequently contain the same DNA motifs at their promoter regions, suggesting that potential transcription factors binding to these motifs are involved in defining the associations among those genes. Our study suggests the presence of a global genome organization in fission yeast that is functionally similar to the recently proposed mammalian transcription factory.
Asunto(s)
Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Schizosaccharomyces/genética , Transcripción Genética , Ciclo Celular/genética , ADN de Hongos/química , Sitios Genéticos , Genómica/métodos , Hibridación Fluorescente in Situ , Modelos Moleculares , Mapeo Físico de Cromosoma , Retroelementos , Schizosaccharomyces/metabolismo , Secuencias Repetidas TerminalesRESUMEN
Epstein-Barr virus (EBV) genomes persist in latently infected cells as extrachromosomal episomes that attach to host chromosomes through the tethering functions of EBNA1, a viral encoded sequence-specific DNA binding protein. Here we employ circular chromosome conformation capture (4C) analysis to identify genome-wide associations between EBV episomes and host chromosomes. We find that EBV episomes in Burkitt's lymphoma cells preferentially associate with cellular genomic sites containing EBNA1 binding sites enriched with B-cell factors EBF1 and RBP-jK, the repressive histone mark H3K9me3, and AT-rich flanking sequence. These attachment sites correspond to transcriptionally silenced genes with GO enrichment for neuronal function and protein kinase A pathways. Depletion of EBNA1 leads to a transcriptional de-repression of silenced genes and reduction in H3K9me3. EBV attachment sites in lymphoblastoid cells with different latency type show different correlations, suggesting that host chromosome attachment sites are functionally linked to latency type gene expression programs.