Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Ecol Appl ; 30(8): e02200, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32573866

RESUMEN

Invasive mammalian predators can cause the decline and extinction of vulnerable native species. Many invasive mammalian predators are dietary generalists that hunt a variety of prey. These predators often rely upon olfaction when foraging, particularly at night. Little is understood about how prey odor cues are used to inform foraging decisions. Prey cues can vary spatially and temporally in their association with prey and can either reveal the location of prey or lead to unsuccessful foraging. Here we examine how two wild-caught invasive mammalian bird predator species (European hedgehogs Erinaceus europaeus and ferrets Mustela putorius furo) respond to unrewarded bird odors over successive exposures, first demonstrating that the odors are perceptually different using house mice (Mus musculus) as a biological olfactometer. We aim to test if introduced predators categorize odor cues of similar prey together, a tactic that could increase foraging efficiency. We exposed house mice to the odors using a standard habituation/dishabituation test in a laboratory setting, and wild-caught European hedgehogs and ferrets in an outdoor enclosure using a similar procedure. Mice discriminated among all bird odors presented, showing more interest in chicken odor than quail or gull odor. Both predator species showed a decline in interest toward unrewarded prey odor (i.e., habituation), but only ferrets generalized their response from one unrewarded bird odor to another bird odor. Hedgehog responses to unrewarded bird odors were highly variable between individuals. Taken together, our results reveal interspecific and intraspecific differences in response to prey odors, which we argue are a consequence of different diet breadth, life and evolutionary histories, and the conditions in each experiment. Generalization of prey odors may have enabled some species of invasive predators to efficiently hunt a range of intraguild prey species, for example, ground-nesting shorebirds. Olfactory manipulation of predators may be a useful conservation tool for threatened prey if it reduces the conspicuousness of vulnerable prey.


Asunto(s)
Señales (Psicología) , Conducta Predatoria , Animales , Aves , Mamíferos , Ratones , Odorantes
2.
Environ Manage ; 59(3): 477-489, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28078387

RESUMEN

To achieve biodiversity gains, landowner engagement in coordinated invasive species control programs across private lands is needed. Understanding landowners' perspectives toward such coordinated control efforts is crucial to facilitating engagement. We conducted in person and mail surveys of 68 landowners in and adjacent to the area of a proposed invasive predator control program in New Zealand. We find that, similar to previous studies, landowners consider the potential socioeconomic and ecological benefits of invasive species control and express a strong desire to enhance native biodiversity. However, we also find that landowners take into account the complexity of the local social and ecological context in which a program will unfold in three ways: they consider (1) the level of contribution by other landowners and urban residents who are benefiting from collective control efforts; (2) the potential for the program to upset the local "ecological balance", leading to increases in other pests; and (3) the probability that the program will be successful given the likelihood of others participating and control tactics being effective. We suggest that managers of coordinated invasive species control efforts may benefit from devoting time and resources toward addressing beliefs about social and ecological context, rather than solely providing financial subsidies and information about control tactics or the impacts of invasive species.


Asunto(s)
Conservación de los Recursos Naturales , Política Ambiental , Especies Introducidas , Control de Plagas/métodos , Animales , Biodiversidad , Conservación de los Recursos Naturales/economía , Conservación de los Recursos Naturales/métodos , Ecosistema , Especies Introducidas/economía , Especies Introducidas/tendencias , Motivación , Nueva Zelanda , Propiedad , Control de Plagas/economía , Control de Plagas/organización & administración , Sector Privado , Factores Socioeconómicos , Encuestas y Cuestionarios
3.
Sci Rep ; 12(1): 16520, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36192476

RESUMEN

Effective mitigation of the impacts of invasive ship rats (Rattus rattus) requires a good understanding of their ecology, but this knowledge is very sparse for urban and peri-urban areas. We radiomarked ship rats in Wellington, New Zealand, to estimate detection parameters (σ, ε0, θ, and g0) that describe the process of an animal encountering a device (bait stations, chew cards and WaxTags) from a distance, and then approaching it and deciding whether to interact with it. We used this information in simulation models to estimate optimal device spacing for eradicating ship rats from Wellington, and for confirming eradication. Mean σ was 25.37 m (SD = 11.63), which equates to a circular home range of 1.21 ha. The mean nightly probability of an individual encountering a device at its home range center (ε0) was 0.38 (SD = 0.11), whereas the probability of interacting with the encountered device (θ) was 0.34 (SD = 0.12). The derived mean nightly probability of an individual interacting with a device at its home range center (g0) was 0.13 (SD = 0.08). Importantly, σ and g0 are intrinsically linked through a negative relationship, thus g0 should be derived from σ using a predictive model including individual variability. Simulations using this approach showed that bait stations deployed for about 500 days using a 25 m × 25 m grid consistently achieved eradication, and that a surveillance network of 3.25 chew cards ha-1 or 3.75 WaxTags ha-1 active for 14 nights would be required to confidently declare eradication. This density could be halved if the surveillance network was deployed for 28 nights or if the prior confidence in eradication was high (0.85). These recommendations take no account of differences in detection parameters between habitats. Therefore, if surveillance suggests that individuals are not encountering devices in certain habitats, device density should be adaptively revised. This approach applies to initiatives globally that aim to optimise eradication with limited funding.


Asunto(s)
Especies Introducidas , Animales , Nueva Zelanda/epidemiología , Densidad de Población , Ratas
4.
Sci Adv ; 7(11)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33692107

RESUMEN

Efficient decision-making integrates previous experience with new information. Tactical use of misinformation can alter choice in humans. Whether misinformation affects decision-making in other free-living species, including problem species, is unknown. Here, we show that sensory misinformation tactics can reduce the impacts of predators on vulnerable bird populations as effectively as lethal control. We repeatedly exposed invasive mammalian predators to unprofitable bird odors for 5 weeks before native shorebirds arrived for nesting and for 8 weeks thereafter. Chick production increased 1.7-fold at odor-treated sites over 25 to 35 days, with doubled or tripled odds of successful hatching, resulting in a 127% increase in modeled population size in 25 years. We demonstrate that decision-making processes that respond to changes in information reliability are vulnerable to tactical manipulation by misinformation. Altering perceptions of prey availability offers an innovative, nonlethal approach to managing problem predators and improving conservation outcomes for threatened species.

5.
Trends Ecol Evol ; 35(11): 990-1000, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32900547

RESUMEN

Managing vertebrate pests is a global conservation challenge given their undesirable socio-ecological impacts. Pest management often focuses on the 'average' individual, neglecting individual-level behavioural variation ('personalities') and differences in life histories. These differences affect pest impacts and modify attraction to, or avoidance of, sensory cues. Strategies targeting the average individual may fail to mitigate damage by 'rogues' (individuals causing disproportionate impact) or to target 'recalcitrants' (individuals avoiding standard control measures). Effective management leverages animal behaviours that relate primarily to four core motivations: feeding, fleeing, fighting, and fornication. Management success could be greatly increased by identifying and exploiting individual variation in motivations. We provide explicit suggestions for cue-based tools to manipulate these four motivators, thereby improving pest management outcomes.


Asunto(s)
Señales (Psicología) , Motivación , Animales , Personalidad , Control de Plagas , Vertebrados
6.
Pest Manag Sci ; 73(2): 287-294, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26853520

RESUMEN

BACKGROUND: Introduced brushtail possums are controlled in New Zealand to mitigate their spread of bovine tuberculosis in livestock. Given the low rainfall and extreme variation in seasonal temperatures in dryland areas of the South Island, the habitats of possums in these areas differ in many respects from those in the rest of New Zealand. We investigated the movements and habitat preferences of possums at two dryland sites to identify where they aggregate following population control by using GPS collars and cards chewed by possums. At one site, possum numbers were reduced from high levels by 65%, and at the other site, possums had already been reduced to low levels for some time beforehand but were further reduced to maintain them at low levels. This resulted in different possum densities. RESULTS: Possum home ranges were about 3 times smaller at the higher-density site, but average ranges expanded by 27% following initial control. Home ranges were already large at the lower-density site but did not expand further after maintenance control. No preference for habitat types was apparent at the higher-density site, but at the lower-density site possums selected rock and shrubby habitats and avoided open grassy areas. CONCLUSIONS: Home range sizes and habitat preferences were density dependent: the lower the density, the larger was the home range; and habitat preferences were highly variable between individuals, but less so for possums at low density. Preference for shrubs and rocks is likely to benefit population control if population control devices are focused on these habitat types. © 2016 Society of Chemical Industry.


Asunto(s)
Trichosurus/fisiología , Animales , Ecosistema , Sistemas de Información Geográfica , Fenómenos de Retorno al Lugar Habitual , Especies Introducidas , Nueva Zelanda , Control de Plagas , Regulación de la Población , Densidad de Población
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA