Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 587(7832): 87-91, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33116309

RESUMEN

With the explosion of digital media and technologies, scholars, educators and the public have become increasingly vocal about the role that an 'attention economy' has in our lives1. The rise of the current digital culture coincides with longstanding scientific questions about why humans sometimes remember and sometimes forget, and why some individuals remember better than others2-6. Here we examine whether spontaneous attention lapses-in the moment7-12, across individuals13-15 and as a function of everyday media multitasking16-19-negatively correlate with remembering. Electroencephalography and pupillometry measures of attention20,21 were recorded as eighty young adults (mean age, 21.7 years) performed a goal-directed episodic encoding and retrieval task22. Trait-level sustained attention was further quantified using task-based23 and questionnaire measures24,25. Using trial-to-trial retrieval data, we show that tonic lapses in attention in the moment before remembering, assayed by posterior alpha power and pupil diameter, were correlated with reductions in neural signals of goal coding and memory, along with behavioural forgetting. Independent measures of trait-level attention lapsing mediated the relationship between neural assays of lapsing and memory performance, and between media multitasking and memory. Attention lapses partially account for why we remember or forget in the moment, and why some individuals remember better than others. Heavier media multitasking is associated with a propensity to have attention lapses and forget.


Asunto(s)
Atención/fisiología , Internet , Memoria/fisiología , Adolescente , Adulto , Electroencefalografía , Femenino , Objetivos , Humanos , Masculino , Consolidación de la Memoria , Adulto Joven
2.
Eur J Neurosci ; 59(12): 3162-3183, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38626924

RESUMEN

Musical engagement can be conceptualized through various activities, modes of listening and listener states. Recent research has reported that a state of focused engagement can be indexed by the inter-subject correlation (ISC) of audience responses to a shared naturalistic stimulus. While statistically significant ISC has been reported during music listening, we lack insight into the temporal dynamics of engagement over the course of musical works-such as those composed in the Western classical style-which involve the formulation of expectations that are realized or derailed at subsequent points of arrival. Here, we use the ISC of electroencephalographic (EEG) and continuous behavioural (CB) responses to investigate the time-varying dynamics of engagement with functional tonal music. From a sample of adult musicians who listened to a complete cello concerto movement, we found that ISC varied throughout the excerpt for both measures. In particular, significant EEG ISC was observed during periods of musical tension that built to climactic highpoints, while significant CB ISC corresponded more to declarative entrances and points of arrival. Moreover, we found that a control stimulus retaining envelope characteristics of the intact music, but little other temporal structure, also elicited significantly correlated EEG and CB responses, though to lesser extents than the original version. In sum, these findings shed light on the temporal dynamics of engagement during music listening and clarify specific aspects of musical engagement that may be indexed by each measure.


Asunto(s)
Percepción Auditiva , Electroencefalografía , Música , Humanos , Electroencefalografía/métodos , Masculino , Femenino , Adulto , Percepción Auditiva/fisiología , Adulto Joven , Estimulación Acústica/métodos , Encéfalo/fisiología
3.
PLoS Comput Biol ; 19(10): e1011506, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37782673

RESUMEN

Studies of the mouse visual system have revealed a variety of visual brain areas that are thought to support a multitude of behavioral capacities, ranging from stimulus-reward associations, to goal-directed navigation, and object-centric discriminations. However, an overall understanding of the mouse's visual cortex, and how it supports a range of behaviors, remains unknown. Here, we take a computational approach to help address these questions, providing a high-fidelity quantitative model of mouse visual cortex and identifying key structural and functional principles underlying that model's success. Structurally, we find that a comparatively shallow network structure with a low-resolution input is optimal for modeling mouse visual cortex. Our main finding is functional-that models trained with task-agnostic, self-supervised objective functions based on the concept of contrastive embeddings are much better matches to mouse cortex, than models trained on supervised objectives or alternative self-supervised methods. This result is very much unlike in primates where prior work showed that the two were roughly equivalent, naturally leading us to ask the question of why these self-supervised objectives are better matches than supervised ones in mouse. To this end, we show that the self-supervised, contrastive objective builds a general-purpose visual representation that enables the system to achieve better transfer on out-of-distribution visual scene understanding and reward-based navigation tasks. Our results suggest that mouse visual cortex is a low-resolution, shallow network that makes best use of the mouse's limited resources to create a light-weight, general-purpose visual system-in contrast to the deep, high-resolution, and more categorization-dominated visual system of primates.


Asunto(s)
Aprendizaje , Corteza Visual , Animales , Ratones , Encéfalo , Mapeo Encefálico , Primates
4.
Dev Sci ; 27(2): e13435, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37465984

RESUMEN

Learning to read depends on the ability to extract precise details of letter combinations, which convey critical information that distinguishes tens of thousands of visual word forms. To support fluent reading skill, one crucial neural developmental process is one's brain sensitivity to statistical constraints inherent in combining letters into visual word forms. To test this idea in early readers, we tracked the impact of two years of schooling on within-subject longitudinal changes in cortical responses to three different properties of words: coarse tuning for print, and fine tuning to either familiar letter combinations within visual word forms or whole word representations. We then examined how each related to growth in reading skill. Three stimulus contrasts-words versus pseudofonts, words versus pseudowords, pseudowords versus nonwords-were presented while high-density EEG Steady-State Visual Evoked Potentials (SSVEPs, n = 31) were recorded. Internalization of abstract visual word form structures over two years of reading experience resulted in a near doubling of SSVEP amplitude, with increasing left lateralization. Longitudinal changes (decreases) in brain responses to such word form structural information were linked to the growth in reading skills, especially in rapid automatic naming of letters. No such changes were observed for whole word representation processing and coarse tuning for print. Collectively, these findings indicate that sensitivity to visual word form structure develops rapidly through exposure to print and is linked to growth in reading skill. RESEARCH HIGHLIGHTS: Longitudinal changes in cognitive responses to coarse print tuning, visual word from structure, and whole word representation were examined in early readers. Visual word form structure processing demonstrated striking patterns of growth with nearly doubled in EEG amplitude and increased left lateralization. Longitudinal changes (decreases) in brain responses to visual word form structural information were linked to the growth in rapid automatic naming for letters. No longitudinal changes were observed for whole word representation processing and coarse tuning for print.


Asunto(s)
Electroencefalografía , Lectura , Humanos , Potenciales Evocados Visuales , Mapeo Encefálico , Instituciones Académicas , Reconocimiento Visual de Modelos/fisiología
5.
J Neurosci ; 42(1): 121-134, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34782439

RESUMEN

Children with and without dyslexia differ in their behavioral responses to visual information, particularly when required to pool dynamic signals over space and time. Importantly, multiple processes contribute to behavioral responses. Here we investigated which processing stages are affected in children with dyslexia when performing visual motion processing tasks, by combining two methods that are sensitive to the dynamic processes leading to responses. We used a diffusion model which decomposes response time and accuracy into distinct cognitive constructs, and high-density EEG. Fifty children with dyslexia (24 male) and 50 typically developing children (28 male) 6-14 years of age judged the direction of motion as quickly and accurately as possible in two global motion tasks (motion coherence and direction integration), which varied in their requirements for noise exclusion. Following our preregistered analyses, we fitted hierarchical Bayesian diffusion models to the data, blinded to group membership. Unblinding revealed reduced evidence accumulation in children with dyslexia compared with typical children for both tasks. Additionally, we identified a response-locked EEG component which was maximal over centro-parietal electrodes which indicated a neural correlate of reduced drift rate in dyslexia in the motion coherence task, thereby linking brain and behavior. We suggest that children with dyslexia tend to be slower to extract sensory evidence from global motion displays, regardless of whether noise exclusion is required, thus furthering our understanding of atypical perceptual decision-making processes in dyslexia.SIGNIFICANCE STATEMENT Reduced sensitivity to visual information has been reported in dyslexia, with a lively debate about whether these differences causally contribute to reading difficulties. In this large preregistered study with a blind modeling approach, we combine state-of-the art methods in both computational modeling and EEG analysis to pinpoint the stages of processing that are atypical in children with dyslexia in two visual motion tasks that vary in their requirement for noise exclusion. We find reduced evidence accumulation in children with dyslexia across both tasks, and identify a neural marker, allowing us to link brain and behavior. We show that children with dyslexia exhibit general difficulties with extracting sensory evidence from global motion displays, not just in tasks that require noise exclusion.


Asunto(s)
Encéfalo/fisiopatología , Toma de Decisiones/fisiología , Dislexia/fisiopatología , Percepción de Movimiento/fisiología , Adolescente , Niño , Electroencefalografía , Femenino , Humanos , Masculino
6.
PLoS Comput Biol ; 18(1): e1009739, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34995280

RESUMEN

Task-optimized convolutional neural networks (CNNs) show striking similarities to the ventral visual stream. However, human-imperceptible image perturbations can cause a CNN to make incorrect predictions. Here we provide insight into this brittleness by investigating the representations of models that are either robust or not robust to image perturbations. Theory suggests that the robustness of a system to these perturbations could be related to the power law exponent of the eigenspectrum of its set of neural responses, where power law exponents closer to and larger than one would indicate a system that is less susceptible to input perturbations. We show that neural responses in mouse and macaque primary visual cortex (V1) obey the predictions of this theory, where their eigenspectra have power law exponents of at least one. We also find that the eigenspectra of model representations decay slowly relative to those observed in neurophysiology and that robust models have eigenspectra that decay slightly faster and have higher power law exponents than those of non-robust models. The slow decay of the eigenspectra suggests that substantial variance in the model responses is related to the encoding of fine stimulus features. We therefore investigated the spatial frequency tuning of artificial neurons and found that a large proportion of them preferred high spatial frequencies and that robust models had preferred spatial frequency distributions more aligned with the measured spatial frequency distribution of macaque V1 cells. Furthermore, robust models were quantitatively better models of V1 than non-robust models. Our results are consistent with other findings that there is a misalignment between human and machine perception. They also suggest that it may be useful to penalize slow-decaying eigenspectra or to bias models to extract features of lower spatial frequencies during task-optimization in order to improve robustness and V1 neural response predictivity.


Asunto(s)
Modelos Neurológicos , Redes Neurales de la Computación , Corteza Visual Primaria , Algoritmos , Animales , Biología Computacional , Humanos , Macaca fascicularis , Ratones , Neuronas/citología , Neuronas/fisiología , Corteza Visual Primaria/citología , Corteza Visual Primaria/fisiología
7.
Dev Sci ; 26(4): e13352, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36413170

RESUMEN

There are multiple levels of processing relevant to reading that vary in their visual, sublexical, and lexical orthographic processing demands. Segregating distinct cortical sources for each of these levels has been challenging in EEG studies of early readers. To address this challenge, we applied recent advances in analyzing high-density EEG using Steady-State Visual Evoked Potentials (SSVEPs) via data-driven Reliable Components Analysis (RCA) in a group of early readers spanning from kindergarten to second grade. Three controlled stimulus contrasts-familiar words versus unfamiliar pseudofonts, familiar words versus pseudowords, and pseudowords versus nonwords-were used to isolate coarse print tuning, lexical processing, and sublexical orthography-related processing, respectively. First, three overlapping yet distinct neural sources-left vOT, dorsal parietal, and primary visual cortex were revealed underlying coarse print tuning. Second, we segregated distinct cortical sources for the other two levels of processing: lexical fine tuning over occipito-temporal/parietal regions; sublexical orthographic fine tuning over left occipital regions. Finally, exploratory group analyses based on children's reading fluency suggested that coarse print tuning emerges early even in children with limited reading knowledge, while sublexical and higher-level lexical processing emerge only in children with sufficient reading knowledge. RESEARCH HIGHLIGHTS: Cognitive processes underlying coarse print tuning, sublexical, and lexical fine tuning were examined in beginning readers. Three overlapping yet distinct neural sources-left ventral occipito-temporal (vOT), left temporo-parietal, and primary visual cortex-were revealed underlying coarse print tuning. Responses to sublexical orthographic fine tuning were found over left occipital regions, while responses to higher-level linguistic fine tuning were found over occipito-temporal/parietal regions. Exploratory group analyses suggested that coarse print tuning emerges in children with limited reading knowledge, while sublexical and higher-level linguistic fine tuning effects emerge in children with sufficient reading knowledge.


Asunto(s)
Potenciales Evocados Visuales , Lóbulo Occipital , Niño , Humanos , Lóbulo Occipital/fisiología , Lectura , Lóbulo Temporal/fisiología , Lóbulo Parietal , Potenciales Evocados/fisiología , Reconocimiento Visual de Modelos/fisiología , Mapeo Encefálico
8.
Cereb Cortex ; 32(10): 2277-2290, 2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-34617100

RESUMEN

Symmetry is a highly salient feature of the natural world that is perceived by many species. In humans, the cerebral areas processing symmetry are now well identified from neuroimaging measurements. Macaque could constitute a good animal model to explore the underlying neural mechanisms, but a previous comparative study concluded that functional magnetic resonance imaging responses to mirror symmetry in this species were weaker than those observed in humans. Here, we re-examined symmetry processing in macaques from a broader perspective, using both rotation and reflection symmetry embedded in regular textures. Highly consistent responses to symmetry were found in a large network of areas (notably in areas V3 and V4), in line with what was reported in humans under identical experimental conditions. Our results suggest that the cortical networks that process symmetry in humans and macaques are potentially more similar than previously reported and point toward macaque as a relevant model for understanding symmetry processing.


Asunto(s)
Macaca , Corteza Visual , Animales , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Rotación , Corteza Visual/diagnóstico por imagen , Corteza Visual/fisiología
9.
Neuroimage ; 255: 119186, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35398280

RESUMEN

Cortical processing of binocular disparity is believed to begin in V1 where cells are sensitive to absolute disparity, followed by the extraction of relative disparity in higher visual areas. While much is known about the cortical distribution and spatial tuning of disparity-selective neurons, the relationship between their spatial and temporal properties is less well understood. Here, we use steady-state Visual Evoked Potentials and dynamic random dot stereograms to characterize the temporal dynamics of spatial mechanisms in human visual cortex that are primarily sensitive to either absolute or relative disparity. Stereograms alternated between disparate and non-disparate states at 2 Hz. By varying the disparity-defined spatial frequency content of the stereograms from a planar surface to corrugated ones, we biased responses towards absolute vs. relative disparities. Reliable Components Analysis was used to derive two dominant sources from the 128 channel EEG records. The first component (RC1) was maximal over the occipital pole. In RC1, first harmonic responses were sustained, tuned for corrugation frequency, and sensitive to the presence of disparity references, consistent with prior psychophysical sensitivity measurements. By contrast, the second harmonic, associated with transient processing, was not spatially tuned and was indifferent to references, consistent with it being generated by an absolute disparity mechanism. Thus, our results reveal a duplex coding strategy in the disparity domain, where relative disparities are computed via sustained mechanisms and absolute disparities are computed via transient mechanisms.


Asunto(s)
Percepción de Profundidad , Corteza Visual , Percepción de Profundidad/fisiología , Potenciales Evocados Visuales , Humanos , Estimulación Luminosa/métodos , Disparidad Visual , Visión Binocular/fisiología , Corteza Visual/fisiología
10.
J Vis ; 22(10): 7, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36074477

RESUMEN

Artificial orthographies have long been used in studies of verbal learning and reading. These orthographies, also known as pseudo or false fonts, are designed to match the letters of an existing alphabet on a range of visual features, isolating effects of orthography from those owing to lexical processing. In a parallel line of research, there has been much interest in the design of optotypes for measuring visual acuity that have good properties in terms of character complexity and graceful degradation under blur. Here we merge these two traditions by designing a fully scalable pseudofont, "PseudoSloan," that is based on the design rubric of the widely used Sloan optotypes. The font includes 26 Latin letters as well as two sets of letter-like symbols matching the Latin alphabet on a letter-by-letter basis. Quantitative matching of the pairs of Sloan and PseudoSloan glyphs is done on the basis of ink area and perimetric complexity. We provide the installable PseudoSloan font in TrueType and OpenType formats, plus a large number of PseudoSloan glyphs in .svg format that vary over wide ranges in their perimetric complexity and ink area (https://osf.io/qhj2b/).


Asunto(s)
Lectura , Visión Ocular , Humanos , Reconocimiento Visual de Modelos , Agudeza Visual , Pruebas del Campo Visual
11.
Neuroimage ; 237: 118139, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-33964460

RESUMEN

Horizontal disparities between the two eyes' retinal images are the primary cue for depth. Commonly used random ot tereograms (RDS) intentionally camouflage the disparity cue, breaking the correlations between monocular image structure and the depth map that are present in natural images. Because of the nonlinear nature of visual processing, it is unlikely that simple computational rules derived from RDS will be sufficient to explain binocular vision in natural environments. In order to understand the interplay between natural scene structure and disparity encoding, we used a depth-image-based-rendering technique and a library of natural 3D stereo pairs to synthesize two novel stereogram types in which monocular scene content was manipulated independent of scene depth information. The half-images of the novel stereograms comprised either random-dots or scrambled natural scenes, each with the same depth maps as the corresponding natural scene stereograms. Using these stereograms in a simultaneous Event-Related Potential and behavioral discrimination task, we identified multiple disparity-contingent encoding stages between 100 ~ 500 msec. The first disparity sensitive evoked potential was observed at ~100 msec after an earlier evoked potential (between ~50-100 msec) that was sensitive to the structure of the monocular half-images but blind to disparity. Starting at ~150 msec, disparity responses were stereogram-specific and predictive of perceptual depth. Complex features associated with natural scene content are thus at least partially coded prior to disparity information, but these features and possibly others associated with natural scene content interact with disparity information only after an intermediate, 2D scene-independent disparity processing stage.


Asunto(s)
Percepción de Profundidad/fisiología , Electroencefalografía/métodos , Potenciales Evocados Visuales/fisiología , Neuroimagen Funcional/métodos , Disparidad Visual/fisiología , Visión Monocular/fisiología , Corteza Visual/fisiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Adulto Joven
12.
J Vis ; 21(4): 5, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33830169

RESUMEN

To assess the relative integrity of early visual and auditory processes in autism spectrum disorder (ASD), we used frequency-tagged visual and auditory stimulation and high-density electroencephalogram recordings of unimodal and dual-modality responses in a case-control design. To test for the specificity of effects on ASD, we recorded from a smaller group of children with attention-deficit hyperactivity disorder (ADHD). Horizontal 3 cycle per degree (cpd) gratings were presented at 5 Hz, and a random stream of /ba/, /da/, /ga/ syllables was presented at 6 Hz. Grating contrast response functions were measured unimodally and in the presence of a 64-dB auditory input. Auditory response functions were measured unimodally and in the presence of a 40% contrast grating. Children with ASD (n = 34) and ADHD (n = 13) showed a common lack of audio-visual interaction compared to typically developing children (n = 40) when measured at the first harmonic of the visual stimulus frequency. Both patient groups also showed depressed first harmonic responses at low contrast, but the ADHD group had consistently higher first-harmonic responses at high contrast. Children with ASD had a preferential loss of second-harmonic (transient) responses. The alteredtransient responses in ASD are likely to arise very early in the visual pathway and could thus have downstream consequences for many other visual mechanisms and processes. The alteration in audio-visual interaction could be a signature of a comorbid phenotype shared by ASD and ADHD, possibly due to alterations in attentional selection systems.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Atención , Estudios de Casos y Controles , Niño , Electroencefalografía , Humanos
13.
J Neurosci ; 39(43): 8527-8537, 2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31519817

RESUMEN

Human vision combines inputs from the two eyes into one percept. Small differences "fuse" together, whereas larger differences are seen "rivalrously" from one eye at a time. These outcomes are typically treated as mutually exclusive processes, with paradigms targeting one or the other and fusion being unreported in most rivalry studies. Is fusion truly a default, stable state that only breaks into rivalry for non-fusible stimuli? Or are monocular and fused percepts three sub-states of one dynamical system? To determine whether fusion and rivalry are separate processes, we measured human perception of Gabor patches with a range of interocular orientation disparities. Observers (10 female, 5 male) reported rivalrous, fused, and uncertain percepts over time. We found a dynamic "tristable" zone spanning from ∼25-35° of orientation disparity where fused, left-eye-, or right-eye-dominant percepts could all occur. The temporal characteristics of fusion and non-fusion periods during tristability matched other bistable processes. We tested statistical models with fusion as a higher-level bistable process alternating with rivalry against our findings. None of these fit our data, but a simple bistable model extended to have three states reproduced many of our observations. We conclude that rivalry and fusion are multistable substates capable of direct competition, rather than separate bistable processes.SIGNIFICANCE STATEMENT When inputs to the two eyes differ, they can either fuse together or engage in binocular rivalry, where each eye's view is seen exclusively in turn. Visual stimuli have often been tailored to produce either fusion or rivalry, implicitly treating them as separate mutually-exclusive perceptual processes. We have found that some similar-but-different stimuli can result in both outcomes over time. Comparing various simple models with our results suggests that rivalry and fusion are not independent processes, but compete within a single multistable system. This conceptual shift is a step toward unifying fusion and rivalry, and understanding how they both contribute to the visual system's production of a unified interpretation of the conflicting images cast on the retina by real-world scenes.


Asunto(s)
Disparidad Visual/fisiología , Visión Binocular/fisiología , Percepción Visual/fisiología , Percepción de Profundidad/fisiología , Femenino , Humanos , Masculino , Modelos Neurológicos , Estimulación Luminosa
14.
Neuroimage ; 214: 116559, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31978543

RESUMEN

The brain activity of multiple subjects has been shown to synchronize during salient moments of natural stimuli, suggesting that correlation of neural responses indexes a brain state operationally termed 'engagement'. While past electroencephalography (EEG) studies have considered both auditory and visual stimuli, the extent to which these results generalize to music-a temporally structured stimulus for which the brain has evolved specialized circuitry-is less understood. Here we investigated neural correlation during natural music listening by recording EEG responses from N=48 adult listeners as they heard real-world musical works, some of which were temporally disrupted through shuffling of short-term segments (measures), reversal, or randomization of phase spectra. We measured correlation between multiple neural responses (inter-subject correlation) and between neural responses and stimulus envelope fluctuations (stimulus-response correlation) in the time and frequency domains. Stimuli retaining basic musical features, such as rhythm and melody, elicited significantly higher behavioral ratings and neural correlation than did phase-scrambled controls. However, while unedited songs were self-reported as most pleasant, time-domain correlations were highest during measure-shuffled versions. Frequency-domain measures of correlation (coherence) peaked at frequencies related to the musical beat, although the magnitudes of these spectral peaks did not explain the observed temporal correlations. Our findings show that natural music evokes significant inter-subject and stimulus-response correlations, and suggest that the neural correlates of musical 'engagement' may be distinct from those of enjoyment.


Asunto(s)
Percepción Auditiva/fisiología , Encéfalo/fisiología , Música , Estimulación Acústica/métodos , Adolescente , Adulto , Mapeo Encefálico/métodos , Electroencefalografía/métodos , Femenino , Humanos , Masculino , Adulto Joven
15.
J Neurosci ; 37(23): 5608-5619, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28473649

RESUMEN

Stereopsis is the primary cue underlying our ability to make fine depth judgments. In adults, depth discriminations are supported largely by relative rather than absolute binocular disparity, and depth is perceived primarily for horizontal rather than vertical disparities. Although human infants begin to exhibit disparity-specific responses between 3 and 5 months of age, it is not known how relative disparity mechanisms develop. Here we show that the specialization for relative disparity is highly immature in 4- to 6-month-old infants but is adult-like in 4- to 7-year-old children. Disparity-tuning functions for horizontal and vertical disparities were measured using the visual evoked potential. Infant relative disparity thresholds, unlike those of adults, were equal for vertical and horizontal disparities. Their horizontal disparity thresholds were a factor of ∼10 higher than adults, but their vertical disparity thresholds differed by a factor of only ∼4. Horizontal relative disparity thresholds for 4- to 7-year-old children were comparable with those of adults at ∼0.5 arcmin. To test whether infant immaturity was due to spatial limitations or insensitivity to interocular correlation, highly suprathreshold horizontal and vertical disparities were presented in alternate regions of the display, and the interocular correlation of the interdigitated regions was varied from 0% to 100%. This manipulation regulated the availability of coarse-scale relative disparity cues. Adult and infant responses both increased with increasing interocular correlation by similar magnitudes, but adult responses increased much more for horizontal disparities, further evidence for qualitatively immature stereopsis based on relative disparity at 4-6 months of age.SIGNIFICANCE STATEMENT Stereopsis, our ability to sense depth from horizontal image disparity, is among the finest spatial discriminations made by the primate visual system. Fine stereoscopic depth discriminations depend critically on comparisons of disparity relationships in the image that are supported by relative disparity cues rather than the estimation of single, absolute disparities. Very young human and macaque infants are sensitive to absolute disparity, but no previous study has specifically studied the development of relative disparity sensitivity, a hallmark feature of adult stereopsis. Here, using high-density EEG recordings, we show that 4- to 6-month-old infants display both quantitative and qualitative response immaturities for relative disparity information. Relative disparity responses are adult-like no later than 4-7 years of age.


Asunto(s)
Envejecimiento/fisiología , Percepción de Profundidad/fisiología , Red Nerviosa/fisiología , Disparidad Visual/fisiología , Corteza Visual/fisiología , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Análisis y Desempeño de Tareas , Adulto Joven
16.
J Cogn Neurosci ; 30(2): 200-218, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29040015

RESUMEN

Mapping numbers onto space is foundational to mathematical cognition. These cognitive operations are often conceptualized in the context of a "mental number line" and involve multiple brain regions in or near the intraparietal sulcus (IPS) that have been implicated both in numeral and spatial cognition. Here we examine possible differentiation of function within these brain areas in relating numbers to spatial positions. By isolating the planning phase of a number line task and introducing spatiotopic mapping tools from fMRI into mental number line task research, we are able to focus our analysis on the neural activity of areas in anterior IPS (aIPS) previously associated with number processing and on spatiotopically organized areas in and around posterior IPS (pIPS), while participants prepare to place a number on a number line. Our results support the view that the nonpositional magnitude of a numerical symbol is coded in aIPS, whereas the position of a number in space is coded in posterior areas of IPS. By focusing on the planning phase, we are able to isolate activation related to the cognitive, rather than the sensory-motor, aspects of the task. Also, to allow the separation of spatial position from magnitude, we tested both a standard positive number line (0 to 100) and a zero-centered mixed number line (-100 to 100). We found evidence of a functional dissociation between aIPS and pIPS: Activity in aIPS was associated with a landmark distance effect not modulated by spatial position, whereas activity in pIPS revealed a contralateral preference effect.


Asunto(s)
Conceptos Matemáticos , Lóbulo Parietal/fisiología , Percepción Espacial/fisiología , Pensamiento/fisiología , Adolescente , Adulto , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Lóbulo Parietal/diagnóstico por imagen , Adulto Joven
17.
Neuroimage ; 167: 316-330, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29175495

RESUMEN

Neuroimaging studies have identified multiple extra-striate visual areas that are sensitive to symmetry in planar images (Kohler et al., 2016; Sasaki et al., 2005). Here, we investigated which of these areas are directly involved in perceptual decisions about symmetry, by recording high-density EEG in participants (n = 25) who made rapid judgments about whether an exemplar image contained rotation symmetry or not. Stimulus-locked sensor-level analysis revealed symmetry-specific activity that increased with increasing order of rotation symmetry. Response-locked analysis identified activity occurring between 600 and 200 ms before the button-press, that was directly related to perceptual decision making. We then used fMRI-informed EEG source imaging to characterize the dynamics of symmetry-specific activity within an extended network of areas in visual cortex. The most consistent cortical source of the stimulus-locked activity was VO1, a topographically organized area in ventral visual cortex, that was highly sensitive to symmetry in a previous study (Kohler et al., 2016). Importantly, VO1 activity also contained a strong decision-related component, suggesting that this area plays a crucial role in perceptual decisions about symmetry. Other candidate areas, such as lateral occipital cortex, had weak stimulus-locked symmetry responses and no evidence of correlation with response timing.


Asunto(s)
Electroencefalografía/métodos , Neuroimagen Funcional/métodos , Imagen por Resonancia Magnética/métodos , Reconocimiento Visual de Modelos/fisiología , Desempeño Psicomotor/fisiología , Percepción Espacial/fisiología , Corteza Visual , Adulto , Toma de Decisiones/fisiología , Femenino , Humanos , Masculino , Factores de Tiempo , Corteza Visual/anatomía & histología , Corteza Visual/diagnóstico por imagen , Corteza Visual/fisiología , Adulto Joven
18.
Neuroimage ; 181: 645-658, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29936310

RESUMEN

Diffusion MRI tractography is essential for reconstructing white-matter projections in the living human brain. Yet tractography results miss some projections and falsely identify others. A challenging example is the optic radiation (OR) that connects the thalamus and the primary visual cortex. Here, we tested whether OR tractography can be optimized using quantitative T1 mapping. Based on histology, we proposed that myelin-sensitive T1 values along the OR should remain consistently low compared with adjacent white matter. We found that complementary information from the T1 map allows for increasing the specificity of the reconstructed OR tract by eliminating falsely identified projections. This T1-filtering outperforms other, diffusion-based tractography filters. These results provide evidence that the smooth microstructural signature along the tract can be used as constructive input for tractography. Finally, we demonstrate that this approach can be applied in a case of multiple sclerosis, and generalized to the HCP-available MRI measurements. We conclude that multimodal MRI microstructural information can be used to eliminate spurious tractography results in the case of the OR.


Asunto(s)
Imagen de Difusión Tensora/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Tálamo/anatomía & histología , Corteza Visual/anatomía & histología , Vías Visuales/anatomía & histología , Adolescente , Adulto , Imagen de Difusión Tensora/normas , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/normas , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Tálamo/diagnóstico por imagen , Corteza Visual/diagnóstico por imagen , Vías Visuales/diagnóstico por imagen , Adulto Joven
19.
Proc Biol Sci ; 285(1893): 20182255, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30963913

RESUMEN

There is increasing evidence for a strong genetic basis for autism, with many genetic models being developed in an attempt to replicate autistic symptoms in animals. However, current animal behaviour paradigms rarely match the social and cognitive behaviours exhibited by autistic individuals. Here, we instead assay another functional domain-sensory processing-known to be affected in autism to test a novel genetic autism model in Drosophila melanogaster. We show similar visual response alterations and a similar development trajectory in Nhe3 mutant flies (total n = 72) and in autistic human participants (total n = 154). We report a dissociation between first- and second-order electrophysiological visual responses to steady-state stimulation in adult mutant fruit flies that is strikingly similar to the response pattern in human adults with ASD as well as that of a large sample of neurotypical individuals with high numbers of autistic traits. We explain this as a genetically driven, selective signalling alteration in transient visual dynamics. In contrast to adults, autistic children show a decrease in the first-order response that is matched by the fruit fly model, suggesting that a compensatory change in processing occurs during development. Our results provide the first animal model of autism comprising a differential developmental phenotype in visual processing.


Asunto(s)
Trastorno Autístico/patología , Trastorno Autístico/fisiopatología , Drosophila melanogaster , Animales , Modelos Animales de Enfermedad , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/fisiología , Modelos Genéticos , Percepción Visual
20.
J Vis ; 18(3): 21, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29677337

RESUMEN

We studied disparity-evoked responses in natural scenes using high-density electroencephalography (EEG) in an event-related design. Thirty natural scenes that mainly included outdoor settings with trees and buildings were used. Twenty-four subjects viewed a series of trials composed of sequential two-alternative temporal forced-choice presentation of two different versions (two-dimensional [2D] vs. three-dimensional [3D]) of the same scene interleaved by a scrambled image with the same power spectrum. Scenes were viewed orthostereoscopically at 3 m through a pair of shutter glasses. After each trial, participants indicated with a key press which version of the scene was 3D. Performance on the discrimination was >90%. Participants who were more accurate also tended to respond faster; scenes that were reported more accurately as 3D also led to faster reaction times. We compared visual evoked potentials elicited by scrambled, 2D, and 3D scenes using reliable component analysis to reduce dimensionality. The disparity-evoked response to natural scene stimuli, measured from the difference potential between 2D and 3D scenes, comprised a sustained relative negativity in the dominant response component. The magnitude of the disparity-specific response was correlated with the observer's stereoacuity. Scenes with more homogeneous depth maps also tended to elicit large disparity-specific responses. Finally, the magnitude of the disparity-specific response was correlated with the magnitude of the differential response between scrambled and 2D scenes, suggesting that monocular higher-order scene statistics modulate disparity-specific responses.


Asunto(s)
Encéfalo/fisiología , Disparidad Visual/fisiología , Percepción Visual/fisiología , Adolescente , Adulto , Electroencefalografía , Femenino , Humanos , Masculino , Vías Nerviosas/fisiología , Tiempo de Reacción/fisiología , Análisis Espacio-Temporal , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA