Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
New Phytol ; 234(6): 2088-2100, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34823272

RESUMEN

Plants evolved in association with a diverse community of microorganisms. The effect of plant phylogeny and domestication on host-microbiome co-evolutionary dynamics are poorly understood. Here we examined the effect of domestication and plant lineage on the composition of the endophytic microbiome of 11 Malus species, representing three major groups: domesticated apple (M. domestica), wild apple progenitors, and wild Malus species. The endophytic community of M. domestica and its wild progenitors showed higher microbial diversity and abundance than wild Malus species. Heirloom and modern cultivars harbored a distinct community composition, though the difference was not significant. A community-wide Bayesian model revealed that the endophytic microbiome of domesticated apple is an admixture of its wild progenitors, with clear evidence for microbiome introgression, especially for the bacterial community. We observed a significant correlation between the evolutionary distance of Malus species and their microbiome. This study supports co-evolution between Malus species and their microbiome during domestication. This finding has major implications for future breeding programs and our understanding of the evolution of plants and their microbiomes.


Asunto(s)
Malus , Microbiota , Teorema de Bayes , Domesticación , Malus/genética , Malus/microbiología , Filogenia , Fitomejoramiento
2.
Phytopathology ; 110(7): 1305-1311, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32175827

RESUMEN

Fire blight, caused by the bacterial pathogen Erwinia amylovora, is a persistent problem for pear (Pyrus spp.) growers in the United States. Growing resistant cultivars is one of the best options for managing fire blight. The cultivars Potomac and Old Home and the selection NJA2R59T69 display resistance to fire blight. As such, three mapping populations (El Dorado × Potomac, Old Home × Bartlett, and NJA2R59T69 × Bartlett) were developed to identify genomic regions associated with resistance to fire blight. Progeny were phenotyped during 2017 and 2018 by inoculating multiple actively growing shoots of field-grown seedling trees with E. amylovora isolate E153n via the cut-leaf method. Genotyping was conducted using the recently developed Axiom Pear 70 K Genotyping Array and chromosomal linkage groups were created for each population. An integrated two-way pseudo-testcross approach was used to map quantitative trait loci (QTLs). Resistance QTLs were identified on chromosome 2 for each population. The QTLs identified in the El Dorado × Potomac and Old Home × Bartlett populations are in the same region as QTLs that were previously identified in Harrow Sweet and Moonglow. The QTL in NJA2R59T69 mapped proximally to the previously identified QTLs and originated from an unknown Asian or occidental source. Future research will focus on further characterizing the resistance regions and developing tools for DNA-informed breeding.


Asunto(s)
Erwinia amylovora , Pyrus , Ligamiento Genético , Enfermedades de las Plantas , Sitios de Carácter Cuantitativo
3.
Int J Mol Sci ; 21(24)2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33327659

RESUMEN

Malus sieversii is considered the progenitor of modern apple (Malus pumila) cultivars and to represent a valuable source of genetic diversity. Despite the importance of M. sieversii as a source of disease resistance, stress tolerance, and novel fruit traits, little is known about gene function and diversity in M. sieversii. Notably, a publicly annotated genome sequence for this species is not available. In the current study, the FOX (Full-length cDNA OvereXpressing) gene hunting system was used to construct a library of transgenic lines of Arabidopsis in which each transgenic line overexpresses a full-length gene obtained from a cDNA library of the PI619283 accession of M. sieversii. The cDNA library was constructed from mRNA obtained from bark tissues collected in late fall-early winter, a time at which many abiotic stress-adaptative genes are expressed. Over 4000 apple FOX Arabidopsis lines have been established from the pool of transgenic seeds and cDNA inserts corresponding to various Gene Ontology (GO) categories have been identified. A total of 160 inserts appear to be novel, with no or limited homology to M. pumila, Arabidopsis, or poplar. Over 1300 lines have also been screened for freezing resistance. The constructed library of transgenic lines provides a valuable genetic resource for exploring gene function and diversity in Malus sieversii. Notably, no such library of t-DNA lines currently exists for any Malus species.


Asunto(s)
Malus/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Malus/genética , Proteínas de Plantas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
Mol Plant Microbe Interact ; 31(11): 1179-1191, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30204065

RESUMEN

The AvrRpt2EA effector protein of Erwinia amylovora is important for pathogen recognition in the fire blight-resistant crabapple Malus × robusta 5; however, little is known about its role in susceptible apples. To study its function in planta, we expressed a plant-optimized version of AvrRpt2EA driven by a heat shock-inducible promoter in transgenic plants of the fire blight-susceptible cultivar Pinova. After induced expression of AvrRpt2EA, transgenic lines showed shoot necrosis and browning of older leaves, with symptoms similar to natural fire blight infections. Transgenic expression of this effector protein resulted in an increase in the expression of the salicylic acid (SA)-responsive PR-1 gene but, also, in the levels of SA and its derivatives, with diverse kinetics in leaves of different ages. In contrast, no increase of expression levels of VSP2 paralogs, used as marker genes for the activation of the jasmonic acid (JA)-dependent defense pathway, could be detected, which is in agreement with metabolic profiling of JA and its derivatives. Our work demonstrates that AvrRpt2EA acts as a virulence factor and induces the formation of SA and SA-dependent systemic acquired resistance.


Asunto(s)
Proteínas Bacterianas/metabolismo , Erwinia amylovora/genética , Malus/microbiología , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Bacterianas/genética , Ciclopentanos/metabolismo , Resistencia a la Enfermedad , Erwinia amylovora/patogenicidad , Erwinia amylovora/fisiología , Interacciones Huésped-Patógeno , Malus/inmunología , Oxilipinas/metabolismo , Enfermedades de las Plantas/inmunología , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Ácido Salicílico/metabolismo , Factores de Virulencia
5.
Plant Dis ; 101(10): 1738-1745, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30676925

RESUMEN

Fire blight (Erwinia amylovora) is a devastating bacterial disease in apple that results in severe economic losses. Epidemics are becoming more common as susceptible cultivars and rootstocks are being planted, and control is becoming more difficult as antibiotic-resistant strains develop. Resistant germplasm currently being utilized by breeding programs tend to have small fruit size and poor flavor characteristics. Malus sieversii, a progenitor species of domestic apple, is notable for its relatively large, palatable fruit and some accessions have been reported to be resistant to fire blight. In this study, nearly 200 accessions of M. sieversii and appropriate controls were inoculated with E. amylovora in both Washington and West Virginia to identify fire blight resistant accessions. Twelve accessions were identified with resistance comparable to highly resistant and resistant controls. Several accessions exhibited a unique resistance response, not previously reported in domestic apple (M. × domestica), characterized by low incidence of infection but high severity once infection was initiated. Several of these M. sieversii accessions will be used as parents in future crosses in the Washington State University apple breeding program.


Asunto(s)
Resistencia a la Enfermedad , Erwinia amylovora , Malus , Resistencia a la Enfermedad/genética , Erwinia amylovora/fisiología , Malus/microbiología , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Washingtón , West Virginia
6.
BMC Plant Biol ; 14: 182, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-25004790

RESUMEN

BACKGROUND: Individual plants adapt to their immediate environment using a combination of biochemical, morphological and life cycle strategies. Because woody plants are long-lived perennials, they cannot rely on annual life cycle strategies alone to survive abiotic stresses. In this study we used suppression subtractive hybridization to identify genes both up- and down-regulated in roots during water deficit treatment and recovery. In addition we followed the expression of select genes in the roots, leaves, bark and xylem of 'Royal Gala' apple subjected to a simulated drought and subsequent recovery. RESULTS: In agreement with studies from both herbaceous and woody plants, a number of common drought-responsive genes were identified, as well as a few not previously reported. Three genes were selected for more in depth analysis: a high affinity nitrate transporter (MdNRT2.4), a mitochondrial outer membrane translocase (MdTOM7.1), and a gene encoding an NPR1 homolog (MpNPR1-2). Quantitative expression of these genes in apple roots, bark and leaves was consistent with their roles in nutrition and defense. CONCLUSIONS: Additional genes from apple roots responding to drought were identified using suppression subtraction hybridization compared to a previous EST analysis from the same organ. Genes up- and down-regulated during drought recovery in roots were also identified. Elevated levels of a high affinity nitrate transporter were found in roots suggesting that nitrogen uptake shifted from low affinity transport due to the predicted reduction in nitrate concentration in drought-treated roots. Suppression of a NPR1 gene in leaves of drought-treated apple trees may explain in part the increased disease susceptibility of trees subjected to dehydrative conditions.


Asunto(s)
Genes de Plantas , Malus/genética , Raíces de Plantas/fisiología , Agua/fisiología , Sequías , Regulación de la Expresión Génica de las Plantas , Malus/fisiología , Raíces de Plantas/genética
7.
BMC Genet ; 13: 25, 2012 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-22471693

RESUMEN

BACKGROUND: Breeding of fire blight resistant scions and rootstocks is a goal of several international apple breeding programs, as options are limited for management of this destructive disease caused by the bacterial pathogen Erwinia amylovora. A broad, large-effect quantitative trait locus (QTL) for fire blight resistance has been reported on linkage group 3 of Malus 'Robusta 5'. In this study we identified markers derived from putative fire blight resistance genes associated with the QTL by integrating further genetic mapping studies with bioinformatics analysis of transcript profiling data and genome sequence databases. RESULTS: When several defined E.amylovora strains were used to inoculate three progenies from international breeding programs, all with 'Robusta 5' as a common parent, two distinct QTLs were detected on linkage group 3, where only one had previously been mapped. In the New Zealand 'Malling 9' X 'Robusta 5' population inoculated with E. amylovora ICMP11176, the proximal QTL co-located with SNP markers derived from a leucine-rich repeat, receptor-like protein (MxdRLP1) and a closely linked class 3 peroxidase gene. While the QTL detected in the German 'Idared' X 'Robusta 5' population inoculated with E. amylovora strains Ea222_JKI or ICMP11176 was approximately 6 cM distal to this, directly below a SNP marker derived from a heat shock 90 family protein gene (HSP90). In the US 'Otawa3' X 'Robusta5' population inoculated with E. amylovora strains Ea273 or E2002a, the position of the LOD score peak on linkage group 3 was dependent upon the pathogen strains used for inoculation. One of the five MxdRLP1 alleles identified in fire blight resistant and susceptible cultivars was genetically associated with resistance and used to develop a high resolution melting PCR marker. A resistance QTL detected on linkage group 7 of the US population co-located with another HSP90 gene-family member and a WRKY transcription factor previously associated with fire blight resistance. However, this QTL was not observed in the New Zealand or German populations. CONCLUSIONS: The results suggest that the upper region of 'Robusta 5' linkage group 3 contains multiple genes contributing to fire blight resistance and that their contributions to resistance can vary depending upon pathogen virulence and other factors. Mapping markers derived from putative fire blight resistance genes has proved a useful aid in defining these QTLs and developing markers for marker-assisted breeding of fire blight resistance.


Asunto(s)
Resistencia a la Enfermedad/genética , Erwinia amylovora , Malus/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Ligamiento Genético , Marcadores Genéticos , Malus/inmunología , Enfermedades de las Plantas/inmunología
8.
Planta ; 233(5): 971-83, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21274560

RESUMEN

Low, non-freezing temperatures and/or short daylength (SD) regulates cold acclimation and dormancy in fruit trees. Regarding cold acclimation, C-repeat binding factor (CBF/DREB) transcriptional activator genes have the well-documented ability to induce the expression of a suite of genes associated with increased cold tolerance. We isolated a full-length cDNA of a peach CBF gene, designated PpCBF1 (GenBank Accession HM992943), and constitutively expressed it using an enhanced 35S promoter in apple. Unexpectedly, constitutive overexpression of the PpCBF1 in apple resulted in strong sensitivity to short daylength. Growth cessation and leaf senescence were induced in transgenic lines exposed to SD and optimal growth temperatures of 25°C over a 4-week period. Following 1-4 weeks of SD and 25°C trees were returned to LD and 25°C in the greenhouse. Control (untransformed) plants continued to grow while transgenic lines receiving two or more weeks of SD remained dormant and began to drop leaves. Constitutive overexpression of the PpCBF1 in apple resulted in a 4-6°C increase in freezing tolerance in both the non-acclimated and acclimated states, respectively, compared with untransformed M.26 trees. This is the first instance that constitutive overexpression of a CBF gene has resulted in SD-induction of dormancy and to our knowledge the first time apple has been shown to strongly respond to short daylength as a result of the insertion of a transgene.


Asunto(s)
Malus/genética , Proteínas de Plantas/biosíntesis , Prunus/genética , Prunus/metabolismo , Transactivadores/biosíntesis , Aclimatación/genética , Aclimatación/fisiología , Envejecimiento/fisiología , Secuencia de Aminoácidos , Frío , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , Regulación de la Expresión Génica de las Plantas , Malus/metabolismo , Datos de Secuencia Molecular , Fotoperiodo , Latencia en las Plantas/genética , Latencia en las Plantas/fisiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Alineación de Secuencia , Transactivadores/genética
9.
Hortic Res ; 8(1): 28, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33518709

RESUMEN

Breeding apple cultivars with resistance offers a potential solution to fire blight, a damaging bacterial disease caused by Erwinia amylovora. Most resistance alleles at quantitative trait loci (QTLs) were previously characterized in diverse Malus germplasm with poor fruit quality, which reduces breeding utility. This study utilized a pedigree-based QTL analysis approach to elucidate the genetic basis of resistance/susceptibility to fire blight from multiple genetic sources in germplasm relevant to U.S. apple breeding programs. Twenty-seven important breeding parents (IBPs) were represented by 314 offspring from 32 full-sib families, with 'Honeycrisp' being the most highly represented IBP. Analyzing resistance/susceptibility data from a two-year replicated field inoculation study and previously curated genome-wide single nucleotide polymorphism data, QTLs were consistently mapped on chromosomes (Chrs.) 6, 7, and 15. These QTLs together explained ~28% of phenotypic variation. The Chr. 6 and Chr. 15 QTLs colocalized with previously reported QTLs, while the Chr. 7 QTL is possibly novel. 'Honeycrisp' inherited a rare reduced-susceptibility allele at the Chr. 6 QTL from its grandparent 'Frostbite'. The highly resistant IBP 'Enterprise' had at least one putative reduced-susceptibility allele at all three QTLs. In general, lower susceptibility was observed for individuals with higher numbers of reduced-susceptibility alleles across QTLs. This study highlighted QTL mapping and allele characterization of resistance/susceptibility to fire blight in complex pedigree-connected apple breeding germplasm. Knowledge gained will enable more informed parental selection and development of trait-predictive DNA tests for pyramiding favorable alleles and selection of superior apple cultivars with resistance to fire blight.

10.
BMC Biotechnol ; 10: 41, 2010 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-20525262

RESUMEN

BACKGROUND: Transgenic trees currently are being produced by Agrobacterium-mediated transformation and biolistics. The future use of transformed trees on a commercial basis depends upon thorough evaluation of the potential environmental and public health risk of the modified plants, transgene stability over a prolonged period of time and the effect of the gene on tree and fruit characteristics. We studied the stability of expression and the effect on resistance to the fire blight disease of the lytic protein gene, attacin E, in the apple cultivar 'Galaxy' grown in the field for 12 years. RESULTS: Using Southern and western blot analysis, we compared transgene copy number and observed stability of expression of this gene in the leaves and fruit in several transformed lines during a 12 year period. No silenced transgenic plant was detected. Also the expression of this gene resulted in an increase in resistance to fire blight throughout 12 years of orchard trial and did not affect fruit shape, size, acidity, firmness, weight or sugar level, tree morphology, leaf shape or flower morphology or color compared to the control. CONCLUSION: Overall, these results suggest that transgene expression in perennial species, such as fruit trees, remains stable in time and space, over extended periods and in different organs. This report shows that it is possible to improve a desirable trait in apple, such as the resistance to a pathogen, through genetic engineering, without adverse alteration of fruit characteristics and tree shape.


Asunto(s)
Proteínas de Insectos/metabolismo , Malus/genética , Transgenes , Flores/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Dosificación de Gen , Expresión Génica , Inmunidad Innata , Proteínas de Insectos/genética , Malus/inmunología , Malus/metabolismo , Fenotipo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/inmunología , Plantas Modificadas Genéticamente/metabolismo , Ploidias
11.
Planta ; 230(1): 107-18, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19360436

RESUMEN

Dehydrin genes encode proteins with demonstrated cryoprotective and antifreeze activity, and they respond to a variety of abiotic stress conditions that have dehydration as a common component. Two dehydrins from peach (Prunus persica L. [Batsch.]) have been previously characterized; here, we describe the characterization of a third dehydrin from peach bark, PpDhn3, isolated by its response to low temperature. The expression of all three dehydrin genes was profiled by semi-quantitative reverse transcription PCR, and transcript initiation was mapped for all three genes using the RNA ligase-mediated 5' rapid amplification of cDNA ends technique. PpDhn3 transcripts from bark collected in December or July, as well as transcripts from developing fruit, initiated at a single site. Although most of the PpDhn1 transcripts initiated at a similar position, those from young fruit initiated much further upstream of the consensus TATA box. Bark and fruit transcripts encoding PpDhn2 initiated ca. 30 bases downstream of a consensus TATA box; however, transcripts from ripe fruit initiated further upstream. Ripe fruit transcripts of PpDhn2 contain a 5' leader intron which is predicted to add some 34 amino acids to the N-terminal methionine of the cognate protein when properly processed. Secondary structure prediction of sequences surrounding the TATA box suggests that conformational transitions associated with decreasing temperature contribute to the regulation of expression of the cold-responsive dehydrin genes. Taken together these results reveal new, unexpected levels of gene regulation contributing to the overall expression pattern of peach dehydrins.


Asunto(s)
Frutas/genética , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Prunus/genética , Análisis por Conglomerados , Frío , ADN de Plantas/química , ADN de Plantas/genética , Frutas/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Filogenia , Corteza de la Planta/genética , Proteínas de Plantas/clasificación , Regiones Promotoras Genéticas/genética , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/genética , Prunus/crecimiento & desarrollo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estaciones del Año , Análisis de Secuencia de ADN , TATA Box/genética , Temperatura , Sitio de Iniciación de la Transcripción
12.
Microorganisms ; 7(6)2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-31208074

RESUMEN

Penicillium expansum is a major postharvest pathogen that infects different fruits, mainly through injuries inflicted during harvest or subsequent handling after harvest. Several effectors were suggested to mediate pathogenicity of P. expansum in fruit tissue. Among these effectors Nep1-like proteins (NLPs), produced by various microorganisms with different lifestyles, are known for their ability to induce necrosis in dicot plants and were shown to be involved in virulence of several plant-related pathogens. This study was aimed at the identification and functional characterization of two NLP genes found in the genome of P. expansum. The genes were designated Penlp1 and Penlp2 and were found to code type1 and type3 NLP respectively. Necrosis-inducing activity of the two proteins was demonstrated by transient expression in Nicotiana benthamiana leaves. While Penlp1 expression was induced during apple infection and in liquid culture, the highest level of Penlp2 expression was found in ungerminated spores. Deletion of Penlp1, but not Penlp2, resulted in reduced virulence on apples manifested by reduced rate of lesion development (disease severity).

13.
Physiol Plant ; 133(2): 298-317, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18298416

RESUMEN

Leaf, bark, xylem and root tissues were used to make nine cDNA libraries from non-stressed (control) 'Royal Gala' apple trees, and from 'Royal Gala' trees exposed to either low temperature (5 degrees C for 24 h) or water deficit (45% of saturated pot mass for 2 weeks). Over 22 600 clones from the nine libraries were subjected to 5' single-pass sequencing, clustered and annotated using blastx. The number of clusters in the libraries ranged from 170 to 1430. Regarding annotation of the sequences, blastx analysis indicated that within the libraries 65-72% of the clones had a high similarity to known function genes, 6-15% had no functional assignment and 15-26% were completely novel. The expressed sequence tags were combined into three classes (control, low-temperature and water deficit) and the annotated genes in each class were placed into 1 of 10 different functional categories. The percentage of genes falling into each category was then calculated. This analysis indicated a distinct downregulation of genes involved in general metabolism and photosynthesis, while a significant increase in defense/stress-related genes, protein metabolism and energy was observed. In particular, there was a three-fold increase in the number of stress genes observed in the water deficit libraries indicating a major shift in gene expression in response to a chronic stress. The number of stress genes in response to low temperature, although elevated, was much less than the water deficit libraries perhaps reflecting the shorter (24 h) exposure to stress. Genes with greater than five clones in any specific library were identified and, based on the number of clones obtained, the fold increase or decrease in expression in the libraries was calculated and verified by semiquantitative polymerase chain reaction. Genes, of particular note, that code for the following proteins were overexpressed in the low-temperature libraries: dehydrin and metallothionein-like proteins, ubiquitin proteins, a dormancy-associated protein, a plasma membrane intrinsic protein and an RNA-binding protein. Genes that were upregulated in the water deficit libraries fell mainly into the functional categories of stress (heat shock proteins, dehydrins) and photosynthesis. With few exceptions, the overall differences in downregulated genes were nominal compared with differences in upregulated genes. The results of this apple study are similar to other global studies of plant response to stress but offer a more detailed analysis of specific tissue response (bark vs xylem vs leaf vs root) and a comparison between an acute stress (24-h exposure to low temperature) and a chronic stress (2 weeks of water deficit).


Asunto(s)
Frío , Desecación , Etiquetas de Secuencia Expresada , Malus/genética , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Genes de Plantas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN
14.
Mol Plant Pathol ; 19(5): 1090-1103, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28756640

RESUMEN

Erwinia amylovora is the causal agent of the fire blight disease in some plants of the Rosaceae family. The non-host plant Arabidopsis serves as a powerful system for the dissection of mechanisms of resistance to E. amylovora. Although not yet known to mount gene-for-gene resistance to E. amylovora, we found that Arabidopsis activated strong defence signalling mediated by salicylic acid (SA), with kinetics and amplitude similar to that induced by the recognition of the bacterial effector avrRpm1 by the resistance protein RPM1. Genetic analysis further revealed that SA signalling, but not signalling mediated by ethylene (ET) and jasmonic acid (JA), is required for E. amylovora resistance. Erwinia amylovora induces massive callose deposition on infected leaves, which is independent of SA, ET and JA signalling and is necessary for E. amylovora resistance in Arabidopsis. We also observed tumour-like growths on E. amylovora-infected Arabidopsis leaves, which contain enlarged mesophyll cells with increased DNA content and are probably a result of endoreplication. The formation of such growths is largely independent of SA signalling and some E. amylovora effectors. Together, our data reveal signalling requirements for E. amylovora-induced disease resistance, callose deposition and cell fate change in the non-host plant Arabidopsis. Knowledge from this study could facilitate a better understanding of the mechanisms of host defence against E. amylovora and eventually improve host resistance to the pathogen.


Asunto(s)
Arabidopsis/citología , Arabidopsis/microbiología , Resistencia a la Enfermedad , Erwinia amylovora/fisiología , Glucanos/metabolismo , Enfermedades de las Plantas/microbiología , Transducción de Señal , Arabidopsis/inmunología , Proliferación Celular , Ciclopentanos/metabolismo , Etilenos/metabolismo , Iones , Mutación/genética , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo
15.
Microbiome ; 6(1): 18, 2018 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-29374490

RESUMEN

BACKGROUND: High-throughput amplicon sequencing spanning conserved portions of microbial genomes (16s rRNA and ITS) was used in the present study to describe the endophytic microbiota associated with three apple varieties, "Royal Gala," "Golden Delicious," and "Honey Crisp," and two rootstocks, M.9 and M.M.111. The objectives were to (1) determine if the microbiota differs in different rootstocks and apple varieties and (2) determine if specific rootstock-scion combinations influence the microbiota composition of either component. RESULTS: Results indicated that Ascomycota (47.8%), Zygomycota (31.1%), and Basidiomycota (11.6%) were the dominant fungal phyla across all samples. The majority of bacterial sequences were assigned to Proteobacteria (58.4%), Firmicutes (23.8%), Actinobacteria (7.7%), Bacteroidetes (2%), and Fusobacteria (0.4%). Rootstocks appeared to influence the microbiota of associated grafted scion, but the effect was not statistically significant. Pedigree also had an impact on the composition of the endophytic microbiota, where closely-related cultivars had a microbial community that was more similar to each other than it was to a scion cultivar that was more distantly-related by pedigree. The more vigorous rootstock (M.M.111) was observed to possess a greater number of growth-promoting bacterial taxa, relative to the dwarfing rootstock (M.9). CONCLUSIONS: The mechanism by which an apple genotype, either rootstock or scion, has a determinant effect on the composition of a microbial community is not known. The similarity of the microbiota in samples with a similar pedigree suggests the possibility of some level of co-evolution or selection as proposed by the "holobiont" concept in which metaorganisms have co-evolved. Clearly, however, the present information is only suggestive, and a more comprehensive analysis is needed.


Asunto(s)
Bacterias/clasificación , Hongos/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Malus/genética , ARN Ribosómico 16S/genética , Actinobacteria/clasificación , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Ascomicetos/clasificación , Ascomicetos/genética , Ascomicetos/aislamiento & purificación , Bacterias/genética , Bacterias/aislamiento & purificación , Basidiomycota/clasificación , Basidiomycota/genética , Basidiomycota/aislamiento & purificación , Endófitos , Firmicutes/clasificación , Firmicutes/genética , Firmicutes/aislamiento & purificación , Hongos/genética , Hongos/aislamiento & purificación , Fusobacterias/clasificación , Fusobacterias/genética , Fusobacterias/aislamiento & purificación , Genotipo , Malus/microbiología , Microbiota , Filogenia , Raíces de Plantas/microbiología , Proteobacteria/clasificación , Proteobacteria/genética , Proteobacteria/aislamiento & purificación
16.
PLoS One ; 12(3): e0172949, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28257442

RESUMEN

Blue mold caused by Penicillium expansum is the most important postharvest disease of apple worldwide and results in significant financial losses. There are no defined sources of resistance to blue mold in domesticated apple. However, resistance has been described in wild Malus sieversii accessions, including plant introduction (PI)613981. The objective of the present study was to identify the genetic loci controlling resistance to blue mold in this accession. We describe the first quantitative trait loci (QTL) reported in the Rosaceae tribe Maleae conditioning resistance to P. expansum on genetic linkage group 3 (qM-Pe3.1) and linkage group 10 (qM-Pe10.1). These loci were identified in a M.× domestica 'Royal Gala' X M. sieversii PI613981 family (GMAL4593) based on blue mold lesion diameter seven days post-inoculation in mature, wounded apple fruit inoculated with P. expansum. Phenotypic analyses were conducted in 169 progeny over a four year period. PI613981 was the source of the resistance allele for qM-Pe3.1, a QTL with a major effect on blue mold resistance, accounting for 27.5% of the experimental variability. The QTL mapped from 67.3 to 74 cM on linkage group 3 of the GMAL4593 genetic linkage map. qM-Pe10.1 mapped from 73.6 to 81.8 cM on linkage group 10. It had less of an effect on resistance, accounting for 14% of the experimental variation. 'Royal Gala' was the primary contributor to the resistance effect of this QTL. However, resistance-associated alleles in both parents appeared to contribute to the least square mean blue mold lesion diameter in an additive manner at qM-Pe10.1. A GMAL4593 genetic linkage map composed of simple sequence repeats and 'Golden Delicious' single nucleotide polymorphism markers was able to detect qM-Pe10.1, but failed to detect qM-Pe3.1. The subsequent addition of genotyping-by-sequencing markers to the linkage map provided better coverage of the PI613981 genome on linkage group 3 and facilitated discovery of qM-Pe3.1. A DNA test for qM-Pe3.1 has been developed and is currently being evaluated for its ability to predict blue mold resistance in progeny segregating for qM-Pe3.1. Due to the long juvenility of apple, the availability of a DNA test to screen for the presence of qM-Pe3.1 at the seedling stage will greatly improve efficiency of breeding apple for blue mold resistance.


Asunto(s)
Resistencia a la Enfermedad/genética , Genoma de Planta , Genotipo , Malus/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Frutas/genética , Frutas/inmunología , Frutas/microbiología , Ligamiento Genético , Marcadores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Malus/inmunología , Malus/microbiología , Repeticiones de Microsatélite , Penicillium/patogenicidad , Penicillium/fisiología , Fenotipo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable
17.
Front Plant Sci ; 8: 1981, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29201037

RESUMEN

Malus sieversii from Central Asia is a progenitor of the modern domesticated apple (Malus × domestica). Several accessions of M. sieversii are highly resistant to the postharvest pathogen Penicillium expansum. A previous study identified the qM-Pe3.1 QTL on LG3 for resistance to P. expansum in the mapping population GMAL4593, developed using the resistant accession, M. sieversii -PI613981, and the susceptible cultivar "Royal Gala" (RG) (M. domestica), as parents. The goal of the present study was to characterize the transcriptomic response of susceptible RG and resistant PI613981 apple fruit to wounding and inoculation with P. expansum using RNA-Seq. Transcriptomic analyses 0-48 h post inoculation suggest a higher basal level of resistance and a more rapid and intense defense response to wounding and wounding plus inoculation with P. expansum in M. sieversii -PI613981 than in RG. Functional analysis showed that ethylene-related genes and genes involved in "jasmonate" and "MYB-domain transcription factor family" were over-represented in the resistant genotype. It is suggested that the more rapid response in the resistant genotype (Malus sieversii-PI613981) plays a major role in the resistance response. At least twenty DEGs were mapped to the qM-Pe3.1 QTL (M × d v.1: 26,848,396-28,424,055) on LG3, and represent potential candidate genes responsible for the observed resistance QTL in M. sieversii-PI613981. RT-qPCR of several of these genes was used to validate the RNA-Seq data and to confirm their higher expression in MS0.

18.
PLoS One ; 12(10): e0186023, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29084256

RESUMEN

P. expansum is regarded as one of the most important postharvest rots of apple fruit and is also of great concern to fruit processing industries. Elucidating the pathogenicity mechanism of this pathogen is of utmost importance for the development of effective and safe management strategies. Although, many studies on modification of the host environment by the pathogen were done, its interactions with fruit during the early stages of infection and the virulence factors that mediate pathogenicity have not been fully defined. Effectors carrying LysM domain have been identified in numerous pathogenic fungi and their role in the first stages of infection has been established. In this study, we identified 18 LysM genes in the P. expansum genome. Amino acid sequence analysis indicated that P. expansum LysM proteins belong to a clade of fungal-specific LysM. Eleven of the discovered LysM genes were found to have secretory pathway signal peptide, among them, 4 (PeLysM1 PeLysM2, PeLysM3 and PeLysM4) were found to be highly expressed during the infection and development of decay of apple fruit. Effect of targeted deletion of the four putative PeLysM effectors on the growth and pathogenicity was studied. Possible interactions of PeLysM with host proteins was investigated using the yeast-two-hybrid system.


Asunto(s)
Genes Fúngicos , Malus/microbiología , Penicillium/genética , Secuencia de Aminoácidos , Técnicas de Silenciamiento del Gen , Penicillium/crecimiento & desarrollo , Penicillium/patogenicidad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Esporas Fúngicas
19.
Hortic Res ; 3: 16006, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26981253

RESUMEN

The C-repeat binding factor (CBF) transcription factor is involved in responses to low temperature and water deficit in many plant species. Overexpression of CBF genes leads to enhanced freezing tolerance and growth inhibition in many species. The overexpression of a peach CBF (PpCBF1) gene in a transgenic line of own-rooted apple (Malus×domestica) M.26 rootstock (T166) trees was previously reported to have additional effects on the onset of dormancy and time of spring budbreak. In the current study, the commercial apple cultivar 'Royal Gala' (RG) was grafted onto either non-transgenic M.26 rootstocks (RG/M.26) or transgenic M.26 (T166) rootstocks (RG/T166) and field grown for 3 years. No PpCBF1 transcript was detected in the phloem or cambium of RG scions grafted on T166 rootstocks indicating that no graft transmission of transgene mRNA had occurred. In contrast to own-rooted T166 trees, no impact of PpCBF1 overexpression in T166 rootstocks was observed on the onset of dormancy, budbreak or non-acclimated leaf-cold hardiness in RG/T166 trees. Growth, however, as measured by stem caliper, current-year shoot extension and overall height, was reduced in RG/T166 trees compared with RG/M.26 trees. Although flowering was evident in both RG/T166 and RG/M.26 trees in the second season, the number of trees in flower, the number of shoots bearing flowers, and the number of flower clusters per shoot was significantly higher in RG/M.26 trees than RG/T166 trees in both the second and third year after planting. Elevated levels of RGL (DELLA) gene expression were observed in RG/T166 trees and T166 trees, which may play a role in the reduced growth observed in these tree types. A model is presented indicating how CBF overexpression in a rootstock might influence juvenility and flower abundance in a grafted scion.

20.
Front Plant Sci ; 6: 85, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25774159

RESUMEN

The timing of cold acclimation and deacclimation, dormancy, and budbreak play an integral role in the life cycle of woody plants. The molecular events that regulate these parameters have been the subject of much study, however, in most studies these events have been investigated independently of each other. Ectopic expression of a peach CBF (PpCBF1) in apple increases the level of both non-acclimated and acclimated freezing tolerance relative to the non-transformed control, and also inhibits growth, induces early bud set and leaf senescence, and delays bud break in the spring. The current study examined differences in the seasonal expression of genes (CBF, DAM, RGL, and EBB) that have been reported to be associated with freezing tolerance, dormancy, growth, and bud break, respectively, in the PpCBF1 T166 transgenic apple line and the non-transformed M.26 control. Results indicated that expression of several of these key genes, including MdDAM, MdRGL, and MdEBB was altered in transgenic T166 trees relative to non-transformed M.26 trees. In particular, several putative MdDAM genes, associated with the dormancy-cycle in other species of woody plants in the Rosaceae, exhibited different patterns of expression in the T166 vs. M.26 trees. Additionally, for the first time a putative APETALA2/Ethylene-responsive transcription factor, originally described in poplar and shown to regulate the timing of bud break, was shown to be associated with the timing of bud break in apple. Since the overexpression of PpCBF1 in apple results in a dramatic alteration in cold acclimation, dormancy, and growth, this transgenic line (T166) may represent a useful model for studying the integration of these seasonal life-cycle parameters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA